Introduction

The introduction of mathematical literature of Γ-algebraic system dates back to 1964. The notion of Γ in algebraic structure was first introduced by N. Nobusawa [44]. In 1964, N. Nobusawa published a paper [44] entitled “On a generalisation of ring theory” which opened a new horizon in the research of Γ-algebraic structure. In this paper [44] Nobusawa introduced a new type of algebraic system which is known as Γ-ring. The class of Γ-rings contains not only all rings but also Hestenes ternary rings [29]. Many fundamental results of ring theory were extended to Γ-rings. There is a large literature dealing with Γ-rings, some of them are in [3], [4] [5] and [6].

Now we consider the following example:

Let A be a non-empty set and S be the set of all mappings from A to A. Then S is a semigroup with respect to the usual composition of mappings, which is known as full transformation semigroup on A. But this result does not happen if we consider S to be the set of all mappings from a non-empty set A to another non-empty set B. Now, if Γ is the set of all mappings from B to A and aab, $aa\beta$ denote the usual product of mappings, where $a, b \in S$ and $\alpha, \beta \in \Gamma$ then $aab \in S$ and $aa\beta \in \Gamma$. Moreover, $(aab)\beta c = a(ab\beta)c = a\alpha(b\beta)c$ for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Considering this as a natural example, in 1981, M. K. Sen first introduced the notion of Γ-semigroup as follows:

Let S and Γ be two nonempty sets. S is called Γ-semigroup if there exist mappings $S \times \Gamma \times S \rightarrow S$, written as $(a, \alpha, b) \rightarrow aab$, and $\Gamma \times S \times \Gamma \rightarrow \Gamma$, written as $(\alpha, a, \beta) \rightarrow \alpha a\beta$, satisfying the identities $a\alpha(b\beta c) = a(ab\beta)c = (aab)\beta c$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

In 1986, M. K. Sen and N. K. Saha [58] weakened the defining conditions of Γ-semigroup and redefined Γ-semigroup as follows:
Let $S = \{a, b, c, \ldots\}$ and $T = \{a, \beta, \gamma, \ldots\}$ be two nonempty sets. S is called a Γ-semigroup if

(i) $aab \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and

(ii) $(aab)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$. The notion of this Γ-semigroup is usually known as one sided Γ-semigroup.

Let S be an arbitrary semigroup. Let 1 be a symbol not representing any element of S. Let us extend the binary operation defined on S to $S \cup \{1\}$ by defining $11 = 1$ and $1a = a1 = a$ for all $a \in S$. It can be shown that $S \cup \{1\}$ is a semigroup with identity element 1. Let $\Gamma = \{1\}$. If we take $ab = a1b$, it can be shown that the semigroup S is a Γ-semigroup where $\Gamma = \{1\}$. Thus a semigroup can be considered to be a Γ-semigroup.

N. C. Adhikari [14] studied both sided Γ-semigroup defined by conditions (i) $a\alpha(b\beta c) = a(\alpha b)c = (a\alpha b)c$ and (ii) $a\alpha(b\gamma) = \alpha(a\beta b)\gamma = (a\alpha b)\beta c$ for all $a, b, c \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

Let S be the set of all integers of the form $6n+1$ and Γ be the set of all integers of the form $6n + 5$ where n is an integer. If aab is $a + \alpha + b$ and $\alpha a\beta = a + a + \beta$ for all $a, b \in S$ and $\alpha \in \Gamma$ then S is a both sided Γ-semigroup.

The following example shows that there exists a one sided Γ-semigroup which is not a both sided Γ-semigroup.

Let S be a set of all negative rational numbers. Obviously S is not a semigroup under usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p} : p \text{ is prime} \}$. Let $a, b, c \in S$ and $\alpha, \beta \in \Gamma$. Now if aac is equal to the usual product of rational numbers a, α, b, then $aac \in S$ and $(aac)\beta c = a\alpha(b\beta c)$. Hence S is a one sided Γ-semigroup. It is also clear that it is not a both sided Γ-semigroup.

The theory of semigroup was enriched by many mathematicians. More information about semigroup can be found in [31] and [12]. We have noticed that every semi-
group can be considered as a Γ-semigroup and also there was a remarkable growth of Γ-semigroup theory for example [33], [38], [67]. However, there remains a lot more to be explored. In the present thesis, we study some more interesting properties of Γ-semigroups.

This thesis consists of six chapters. Chapter - 1 is essentially a preliminary survey of the basic definitions and known results concerning Γ-semigroup which are needed to develop this thesis.

In Chapter - 2, we introduce and study strongly prime and uniformly strongly prime Γ-semigroups. In the first section, we introduce Rees congruence on a Γ-semigroup S and study some properties relating operator semigroup of S. In the second section, we study right strongly prime Γ-semigroups and right strongly prime ideals. We show that if S is a prime Γ-semigroup with DCC on right annihilators, then S is a right strongly prime Γ-semigroup. Moreover, we show that there is a one-one correspondence between the set of all right strongly prime ideals of S and its operator semigroups. In the third section, we introduce uniformly strongly prime (usp) Γ-semigroups and uniformly strongly prime (usp) ideals of a Γ-semigroup. We also define essential extension of a Γ-semigroup and show that if S is a uniformly strongly prime Γ-semigroup, then any essential extension of S is a uniformly strongly prime Γ-semigroup. In the fourth section, we study usp radical of a Γ-semigroup and in the fifth section, we introduce the notion of the structure space of Γ-semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space.

In Chapter - 3, in the first section, we introduce right(resp.left) orthodox Γ-semigroup and try to generalize the properties of semigroup to the right(resp.left) orthodox Γ-semigroup. In the second section, we introduce right(resp.left) sandwich set of a Γ-semigroup which takes part an important role in Γ-semigroup. In the third section, we
introduce right inverse Γ-semigroups and study such type of Γ-semigroups. We also investi-
gate the maximum idempotent separating congruence on a right inverse Γ-semigroup.

In Chapter - 4, in the first section we study the notion of the semidirect product of
a semigroup and a Γ-semigroup. Necessary and sufficient conditions for this semidirect
product to be right(resp. left) orthodox Γ-semigroup and right(resp. left) inverse Γ-
semigroup are obtained. In section 2 we introduce the wreath product of a semigroup
and a Γ-semigroup with unities and study it.

In Chapter - 5, we generalize the property of a regular Γ-semigroup. A Γ-semigroup
S is called an E- inversive Γ-semigroup if for each $a \in S$ there exist $x \in S$ and $\alpha \in \Gamma$
such that aax is a β-idempotent for some $\beta \in \Gamma$. A Γ-semigroup is called a right E- Γ-
semigroup if for any α- idempotent e and for any β-idempotent f, eaf is a β-idempotent.
In the first two sections we investigate some results relating E- inversive Γ-semigroups
and right E- Γ-semigroups respectively. In the third section we investigate Γ-group
congruences on an E-inversive Γ-semigroup and also give some equivalent expressions
for any Γ-group congruences on an E-inversive Γ-semigroup. We also give the least
Γ-group congruence on an E-inversive Γ-semigroup.

In Chapter - 6, for a given Γ-semigroup S, we define a hyperoperation $'o'$ on S by
$a \circ b = \{aab : a \in \Gamma\}$ for $a, b \in S$. We have shown that (S, \circ) is a semihypergroup. This
semihypergroup is called the semihypergroup associated with the Γ-semigroup S. In this
chapter we study different properties of semihypergroups associated with Γ-semigroups
and also we discuss some fundamental properties of semihypergroups. We also study
hyerideals, prime hyperideals, semiprime hyperideals in semihypergroups and show
that some results of Γ-semigroups published in some research papers can be generalized
to semihypergroups.