TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>COMPOSITE MATERIALS</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>FABRICATION TECHNIQUES</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE SURVEY</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>STIR CASTING TECHNIQUES</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>WEAR BEHAVIOUR OF MATERIALS</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Wear behaviour of Composites</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>ARTIFICIAL NEURAL NETWORK</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Development and Applications of ANN</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>DRILLING CHARACTERISTICS OF COMPOSITES</td>
<td>16</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Introduction</td>
<td>16</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Burr Formation During Drilling</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Drilling of Composites</td>
<td>17</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Drilling of Hybrid Composites</td>
<td>18</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Statistical Analysis in Drilling of Composites</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>MACHINING CHARACTERISTICS OF COMPOSITES</td>
<td>20</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Introduction</td>
<td>20</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Turning of Composites</td>
<td>21</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Statistical Analysis in Turning of Composites</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>CORROSION BEHAVIOUR OF METAL MATRIX COMPOSITES</td>
<td>25</td>
</tr>
</tbody>
</table>

3	AIM OF THE PRESENT STUDY	29
3.1	FABRICATION OF COMPOSITES	29
3.2	WEAR BEHAVIOUR OF METAL MATRIX COMPOSITES	29
3.3	DRILLING OF METAL MATRIX COMPOSITES	30
3.4	TURNING OF METAL MATRIX COMPOSITES	30
3.5	CORROSION BEHAVIOUR OF METAL MATRIX COMPOSITES	30

<p>| 4 | PLAN AND SEQUENCE OF INVESTIGATIONS | 32 |
| 4.1 | PLAN AND SEQUENCE OF INVESTIGATIONS | 32 |</p>
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>MATERIALS AND EXPERIMENTATION</td>
<td>33</td>
</tr>
<tr>
<td>5.1</td>
<td>MATERIALS USED</td>
<td>33</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Matrix Material</td>
<td>33</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Reinforcement Materials</td>
<td>33</td>
</tr>
<tr>
<td>5.2</td>
<td>PREPARATION OF COMPOSITES</td>
<td>34</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Two Stage Stir Casting Method</td>
<td>34</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Modified Two Stage Stir Casting Method</td>
<td>35</td>
</tr>
<tr>
<td>5.3</td>
<td>DRY SLIDING WEAR BEHAVIOUR OF MMCs</td>
<td>38</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Introduction</td>
<td>38</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Materials</td>
<td>38</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Dry Sliding Wear Test</td>
<td>38</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Surface Morphology</td>
<td>41</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Prediction on Dry Sliding Wear</td>
<td>41</td>
</tr>
<tr>
<td>5.3.5.1</td>
<td>Artificial Neural Network (ANN)</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Methodology</td>
<td>42</td>
</tr>
<tr>
<td>5.4</td>
<td>EXPERIMENTS ON DRILLING OF MMCs</td>
<td>48</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Introduction</td>
<td>48</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Materials</td>
<td>48</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Drilling Experimental Setup</td>
<td>49</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Measurement Procedure</td>
<td>49</td>
</tr>
<tr>
<td>5.5</td>
<td>EXPERIMENTS ON TURNING OF MMCs</td>
<td>53</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Materials</td>
<td>53</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Experimental Setup</td>
<td>53</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Cutting Conditions</td>
<td>56</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.6</td>
<td>CORROSION BEHAVIOUR OF MMCs</td>
<td>57</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Materials</td>
<td>57</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Experimental Set up</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>SYNTHESIS OF AL – FLY ASH COMPOSITES</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>BY MODIFIED TWO STAGE STIR CASTING</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>61</td>
</tr>
<tr>
<td>6.2</td>
<td>IMPELLER MODELS</td>
<td>62</td>
</tr>
<tr>
<td>6.3</td>
<td>MECHANICAL PROPERTIES</td>
<td>64</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Hardness</td>
<td>64</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Tensile Strength</td>
<td>65</td>
</tr>
<tr>
<td>6.4</td>
<td>TAGUCHI DESIGN OF EXPERIMENTS</td>
<td>65</td>
</tr>
<tr>
<td>6.5</td>
<td>RESULTS OF S/N RATIO AND ANOVA</td>
<td>67</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Results of ANOVA Studies</td>
<td>67</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Regression Analysis for Evaluation of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardness and Tensile Strength of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composites</td>
<td>69</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Confirmation Test</td>
<td>70</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Discussions</td>
<td>71</td>
</tr>
<tr>
<td>6.5.4.1</td>
<td>Role of magnesium in production</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>of metal matrix composites</td>
<td></td>
</tr>
<tr>
<td>6.5.4.2</td>
<td>Influence of impeller model in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>production of metal matrix</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>composites</td>
<td></td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.5.4.3</td>
<td>Testing of mechanical properties</td>
<td>74</td>
</tr>
<tr>
<td>6.5.4.4</td>
<td>Validation experiment</td>
<td>75</td>
</tr>
<tr>
<td>6.5.4.5</td>
<td>Microstructural analysis of composites</td>
<td>77</td>
</tr>
<tr>
<td>6.6</td>
<td>WEAR BEHAVIOUR OF METAL MATRIX COMPOSITES</td>
<td>81</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Effect of Sliding Speed, Load and Reinforcement on Dry Sliding Wear</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>behaviour of MMCs</td>
<td></td>
</tr>
<tr>
<td>6.6.3</td>
<td>Surface Morphology of Worn Surfaces</td>
<td>86</td>
</tr>
<tr>
<td>6.7</td>
<td>PREDICTION ON DRY SLIDING WEAR BEHAVIOUR OF AL – FLY ASH COMPOSITES –</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>ANN APPROACH</td>
<td></td>
</tr>
<tr>
<td>6.7.1</td>
<td>Introduction – Artificial Neural Network</td>
<td>91</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Dry Sliding Wear Test</td>
<td>92</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Neural Network Model Development and Implementation</td>
<td>93</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Results and Discussion</td>
<td>96</td>
</tr>
<tr>
<td>6.8</td>
<td>STEP DRILLING OF METAL MATRIX COMPOSITES</td>
<td>100</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Introduction</td>
<td>100</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Taguchi Design of Experiments</td>
<td>100</td>
</tr>
<tr>
<td>6.8.3</td>
<td>S/N Ratio and ANOVA Analysis</td>
<td>104</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Multiple Linear Regression Models</td>
<td>105</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Confirmation Test</td>
<td>106</td>
</tr>
</tbody>
</table>
6.8.6 Discussion on Influence of Drilling Parameters on Burr Height

6.8.6.1 Influence of feed on burr height 107
6.8.6.2 Influence of step angle on burr height 108
6.8.6.3 Influence of step size on burr height 108
6.8.6.4 Thrust force measurement 109
6.8.6.5 Influence of reinforcements on burr height 110

6.9 INFLUENCE OF GRAPHITE AND MACHINING PARAMETERS ON SURFACE ROUGHNESS IN TURNING OF AL - FLY ASH - GR HYBRID COMPOSITE 112

6.9.1 Introduction 112
6.9.2 Results and Discussions on Turning of AL, AL - Fly ash and AL- Fly ash – Graphite Composites 113
6.9.2.1 Taguchi design of experiments 113
6.9.2.2 Results of S/N ratio and ANOVA analysis 116
6.9.2.3 Multiple linear regression models 121
6.9.2.4 Confirmation test 122
6.9.2.5 Influence of cutting parameters on surface roughness 123
6.9.2.6 Influence of reinforcements on surface roughness 124
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9.2.7</td>
<td>Construction of surface roughness maps</td>
<td>129</td>
</tr>
<tr>
<td>6.9.2.8</td>
<td>SEM analysis of machined samples</td>
<td>133</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Investigation on chip formation during turning of pure Al and composites</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Turning of pure AL</td>
<td>136</td>
</tr>
<tr>
<td>6.9.3.2</td>
<td>Turning of AL - Fly ash Composite</td>
<td>137</td>
</tr>
<tr>
<td>6.9.3.3</td>
<td>Turning of AL - Fly ash- Gr composite</td>
<td>138</td>
</tr>
<tr>
<td>6.10</td>
<td>CORROSION BEHAVIOUR OF METAL MATRIX COMPOSITES</td>
<td>139</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Results and Discussions</td>
<td>140</td>
</tr>
<tr>
<td>6.10.1.1</td>
<td>Potentiodynamic polarization test results</td>
<td>140</td>
</tr>
<tr>
<td>6.10.1.2</td>
<td>Influence of fly ash - graphite additions on corrosion resistance of composite</td>
<td>142</td>
</tr>
<tr>
<td>6.10.1.3</td>
<td>Surface morphology of corroded surfaces</td>
<td>144</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONS</td>
<td>147</td>
</tr>
<tr>
<td>7.1</td>
<td>INTRODUCTION</td>
<td>147</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Modified Two Stage Stir Casting Method</td>
<td>147</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Wear Behaviour of Metal Matrix Composites</td>
<td>148</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Drilling of Metal Matrix Composites</td>
<td>149</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Turning of Metal Matrix Composites</td>
<td>150</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Corrosion Behaviour of Metal Matrix Composites</td>
<td>151</td>
</tr>
<tr>
<td>7.2</td>
<td>SCOPE FOR FUTURE WORK</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>CURRICULUM VITAE</td>
<td>167</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>ASTM requirement for the chemical composition of class F fly ash</td>
<td>3</td>
</tr>
<tr>
<td>5.1</td>
<td>Chemical composition of fly ash</td>
<td>33</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of experimental conditions for drilling operation</td>
<td>50</td>
</tr>
<tr>
<td>5.3</td>
<td>Details of tool used for turning</td>
<td>54</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of experimental conditions for turning</td>
<td>55</td>
</tr>
<tr>
<td>5.5</td>
<td>Process parameters with their values at three levels for turning operation</td>
<td>57</td>
</tr>
<tr>
<td>6.1</td>
<td>Process parameters with their values at three levels for fabrication of composites</td>
<td>66</td>
</tr>
<tr>
<td>6.2</td>
<td>S/N ratios and measured values for hardness and tensile strength of composites</td>
<td>67</td>
</tr>
<tr>
<td>6.3</td>
<td>ANOVA analysis for Hardness and Tensile strength</td>
<td>67</td>
</tr>
<tr>
<td>6.4</td>
<td>Mechanical properties of Al and Al-fly ash composites</td>
<td>74</td>
</tr>
<tr>
<td>6.5</td>
<td>Wear test results</td>
<td>92</td>
</tr>
<tr>
<td>6.6a</td>
<td>Description of chosen ANN parameters</td>
<td>95</td>
</tr>
<tr>
<td>6.6b</td>
<td>ANN Evaluation for prediction of wear loss of specimens</td>
<td>96</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.7</td>
<td>Factors and levels for drilling operation</td>
<td>101</td>
</tr>
<tr>
<td>6.8</td>
<td>S/N ratios and measured values for burr height of composites</td>
<td>101</td>
</tr>
<tr>
<td>6.9</td>
<td>ANOVA analysis for Burr height</td>
<td>102</td>
</tr>
<tr>
<td>6.10</td>
<td>Optimum values of drilling parameters</td>
<td>104</td>
</tr>
<tr>
<td>6.11</td>
<td>Orthogonal array $L_{27}(3^{13})$ of Taguchi</td>
<td>114</td>
</tr>
<tr>
<td>6.12</td>
<td>Measured surface roughness values of Al, Al-fly ash and Al-fly ash - Gr Composites and S/N ratios</td>
<td>115</td>
</tr>
<tr>
<td>6.13</td>
<td>Response table for Signal to Noise Ratios (surface roughness of pure Al)</td>
<td>116</td>
</tr>
<tr>
<td>6.14</td>
<td>Response table for Signal to Noise Ratios (surface roughness of Al-fly ash Composite)</td>
<td>116</td>
</tr>
<tr>
<td>6.15</td>
<td>Response table for Signal to Noise Ratios (surface roughness of Al-fly ash/Gr Composite)</td>
<td>116</td>
</tr>
<tr>
<td>6.16</td>
<td>ANOVA analysis for surface roughness</td>
<td>117</td>
</tr>
<tr>
<td>6.17</td>
<td>Parameters used in the confirmation test</td>
<td>122</td>
</tr>
<tr>
<td>6.18</td>
<td>Results of confirmation tests</td>
<td>122</td>
</tr>
<tr>
<td>6.19</td>
<td>Corrosion rate of specimens</td>
<td>142</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Influence of turning parameters on surface finish of MMC’s</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Plan and sequence of investigations</td>
<td>32</td>
</tr>
<tr>
<td>5.1</td>
<td>SEM image of fly ash particles</td>
<td>34</td>
</tr>
<tr>
<td>5.2</td>
<td>Schematic of modified two stage stir casting setup</td>
<td>36</td>
</tr>
<tr>
<td>5.3</td>
<td>Modified two stage stir casting setup</td>
<td>37</td>
</tr>
<tr>
<td>5.4</td>
<td>Dry sliding pin –on – disc wear test rig</td>
<td>39</td>
</tr>
<tr>
<td>5.5</td>
<td>Flow chart showing procedure used to evaluate the dry sliding wear of unreinforced Al and composites</td>
<td>40</td>
</tr>
<tr>
<td>5.6</td>
<td>Dry sliding wear test samples before the test</td>
<td>40</td>
</tr>
<tr>
<td>5.7</td>
<td>Schematic of working mechanism of a 1<sup>th</sup> input neuron in ANN</td>
<td>43</td>
</tr>
<tr>
<td>5.8</td>
<td>Experimental setup showing the drilling of metal matrix composites</td>
<td>50</td>
</tr>
<tr>
<td>5.9</td>
<td>Flow chart showing the procedure used to evaluate the burr height of unreinforced Al and composites</td>
<td>51</td>
</tr>
<tr>
<td>5.10</td>
<td>Schematic and actual step drill</td>
<td>51</td>
</tr>
<tr>
<td>5.11</td>
<td>Specimens after drilling</td>
<td>52</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.12</td>
<td>Schematic of drilling set up with dynamometer</td>
<td>52</td>
</tr>
<tr>
<td>5.13</td>
<td>Measurement of burr height using height gauge</td>
<td>52</td>
</tr>
<tr>
<td>5.14</td>
<td>Experimental setup used for the turning operation (CNC lathe)</td>
<td>55</td>
</tr>
<tr>
<td>5.15</td>
<td>Surface roughness measurement tester</td>
<td>56</td>
</tr>
<tr>
<td>5.16</td>
<td>Split die and specimens</td>
<td>56</td>
</tr>
<tr>
<td>5.17(a)</td>
<td>Schematic of potentiostat corrosion test rig</td>
<td>58</td>
</tr>
<tr>
<td>5.17(b)</td>
<td>Potentiostat corrosion test rig</td>
<td>59</td>
</tr>
<tr>
<td>6.1</td>
<td>Radial flow (Rushton type) impeller</td>
<td>62</td>
</tr>
<tr>
<td>6.2</td>
<td>Radial flow impeller</td>
<td>62</td>
</tr>
<tr>
<td>6.3</td>
<td>Axial flow impeller (45°)</td>
<td>63</td>
</tr>
<tr>
<td>6.4</td>
<td>Fluid flow pattern (axial flow impeller)</td>
<td>63</td>
</tr>
<tr>
<td>6.5</td>
<td>Fluid flow pattern (radial flow impeller)</td>
<td>64</td>
</tr>
<tr>
<td>6.6</td>
<td>Specimens after tensile and hardness testing</td>
<td>65</td>
</tr>
<tr>
<td>6.7</td>
<td>Main Effects plot for SN ratios – Hardness</td>
<td>68</td>
</tr>
<tr>
<td>6.8</td>
<td>Main Effects plot for SN ratios Tensile strength</td>
<td>68</td>
</tr>
<tr>
<td>6.9</td>
<td>Hardness of Al – 15 wt% fly ash values for three different variants of stirring method</td>
<td>76</td>
</tr>
<tr>
<td>6.10</td>
<td>Tensile strength of Al – 15 wt% fly ash values for three different variants of stirring method</td>
<td>76</td>
</tr>
<tr>
<td>6.11</td>
<td>SEM micrograph of the Al – 15 wt% fly ash composite (Liquid state stirring)</td>
<td>77</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.12</td>
<td>SEM micrograph of the Al – 15 wt% fly ash composite (Two stage stirring)</td>
<td>78</td>
</tr>
<tr>
<td>6.13</td>
<td>SEM micrograph of the Al – 15 wt% fly ash composite (Modified two stage stirring)</td>
<td>78</td>
</tr>
<tr>
<td>6.14</td>
<td>SEM micrograph of the Al – 15 wt% fly ash composite stirring with 0.3 I_{OD}/C_{ID} ratio radial impeller</td>
<td>79</td>
</tr>
<tr>
<td>6.15</td>
<td>Crucible view (Stirring with 0.3 I_{OD}/C_{ID} ratio)</td>
<td>80</td>
</tr>
<tr>
<td>6.16</td>
<td>Crucible view (Stirring with 0.7 I_{OD}/C_{ID} ratio)</td>
<td>80</td>
</tr>
<tr>
<td>6.17</td>
<td>Wear loss of Al and Al–fly ash composites as a function of sliding speeds 0.5 m/s and 1m/s at constant load 5N</td>
<td>82</td>
</tr>
<tr>
<td>6.18</td>
<td>Wear loss of Al and Al–fly ash composites as a function of of sliding speeds 0.5 m/s and 1m/s at constant load 15N</td>
<td>83</td>
</tr>
<tr>
<td>6.18(a)</td>
<td>EDS spectrum of MML for the Al- 20. %wt. fly ash composite when tested at 5 N, 1m/s</td>
<td>85</td>
</tr>
<tr>
<td>6.18(b)</td>
<td>MML on the worn surface of the Al- 20. %wt. fly ash composite when tested at 15 N, 1m/s</td>
<td>86</td>
</tr>
<tr>
<td>6.18(c)</td>
<td>EDS spectrum of MML for the Al- 20. %wt. fly ash composite when tested at 15 N, 1m/s</td>
<td>86</td>
</tr>
<tr>
<td>6.19</td>
<td>SEM micrograph of the worn surface of the pure Al with a normal load of 5N with 0.5 m/s sliding speed</td>
<td>87</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.20</td>
<td>SEM micrograph of the worn surface of the Al-15wt.% fly ash with a normal load of 5N with 0.5 m/s sliding speed</td>
<td>87</td>
</tr>
<tr>
<td>6.21</td>
<td>SEM micrograph of the worn surface of the Al-15wt.% fly ash with a normal load of 5N with 1 m/s sliding speed</td>
<td>88</td>
</tr>
<tr>
<td>6.22</td>
<td>SEM micrograph of the worn surface of the Al-15wt.% fly ash with a normal load of 15N with 0.5 m/s sliding speed</td>
<td>88</td>
</tr>
<tr>
<td>6.23</td>
<td>SEM micrograph of the worn surface of the Al-15wt.% fly ash with a normal load of 15N with 1 m/s sliding speed</td>
<td>90</td>
</tr>
<tr>
<td>6.24</td>
<td>SEM micrograph of the worn surface of the Al – wt .25 %fly ash composite with a normal load of 15N and 1m/s sliding</td>
<td>90</td>
</tr>
<tr>
<td>6.25</td>
<td>Flow chart showing the procedure used in typical back propagation ANN</td>
<td>95</td>
</tr>
<tr>
<td>6.26</td>
<td>Regression Analysis for the selected network</td>
<td>98</td>
</tr>
<tr>
<td>6.27</td>
<td>Performance plot for the selected network</td>
<td>99</td>
</tr>
<tr>
<td>6.28</td>
<td>Response diagram of S/N ratio for burr height of pure Al</td>
<td>103</td>
</tr>
<tr>
<td>6.29</td>
<td>Response diagram of S/N ratio for burr height of Al –fly ash Composites</td>
<td>103</td>
</tr>
<tr>
<td>6.30</td>
<td>Response diagram of S/N ratio for burr height of Al –fly ash- Gr Composites</td>
<td>104</td>
</tr>
<tr>
<td>6.31</td>
<td>Thrust force generated during drilling of</td>
<td>109</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.32</td>
<td>Thrust force generated during drilling of pure Al -fly ash composites</td>
<td>109</td>
</tr>
<tr>
<td>6.33</td>
<td>Thrust force generated during drilling of Al -fly ash- Gr composites</td>
<td>110</td>
</tr>
<tr>
<td>6.34</td>
<td>Main Effects plot for SN ratios- Surface roughness of pure Al</td>
<td>119</td>
</tr>
<tr>
<td>6.35</td>
<td>Main Effects plot for SN ratios- Surface roughness of Al –fly ash composite</td>
<td>120</td>
</tr>
<tr>
<td>6.36</td>
<td>Main Effects plot for SN ratios- Surface roughness of Al –fly ash -Gr composite</td>
<td>120</td>
</tr>
<tr>
<td>6.37</td>
<td>Effect of cutting speed on surface roughness</td>
<td>124</td>
</tr>
<tr>
<td>6.38</td>
<td>Effect of feed rate on surface roughness</td>
<td>126</td>
</tr>
<tr>
<td>6.39</td>
<td>Effect of depth of cut on surface roughness</td>
<td>128</td>
</tr>
<tr>
<td>6.40 a(i)</td>
<td>Contour plot for surface roughness versus Feed rate and Cutting speed</td>
<td>130</td>
</tr>
<tr>
<td>6.40 a(ii)</td>
<td>Surface plot for surface roughness versus Feed rate and Cutting speed</td>
<td>130</td>
</tr>
<tr>
<td>6.40 b(i)</td>
<td>Contour plot for surface roughness versus Cutting speed and Depth of cut</td>
<td>130</td>
</tr>
<tr>
<td>6.40 b(ii)</td>
<td>Surface plot for surface roughness versus Cutting speed and Depth of cut</td>
<td>131</td>
</tr>
<tr>
<td>6.40 c(i)</td>
<td>Contour plot for surface roughness versus Feed rate and Depth of cut</td>
<td>131</td>
</tr>
<tr>
<td>6.40 c(ii)</td>
<td>Surface plot for surface roughness versus Feed rate and Depth of cut</td>
<td>131</td>
</tr>
<tr>
<td>6.41</td>
<td>SEM image of the pure Al after</td>
<td>133</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.42</td>
<td>SEM image of the Al– 15 wt. % fly ash composite before machining</td>
<td>133</td>
</tr>
<tr>
<td>6.43</td>
<td>SEM image of the Al– 15 wt. % fly ash composite after machining</td>
<td>134</td>
</tr>
<tr>
<td>6.44</td>
<td>SEM image of the Al– 15 wt. % fly ash - 1.5 wt. % Gr after machining</td>
<td>134</td>
</tr>
<tr>
<td>6.45</td>
<td>Chips formed during machining of pure Al</td>
<td>136</td>
</tr>
<tr>
<td>6.46</td>
<td>Chips formed during machining of Al – fly ash composite</td>
<td>137</td>
</tr>
<tr>
<td>6.47</td>
<td>Chips formed during machining of Al – fly ash – Gr composite</td>
<td>138</td>
</tr>
<tr>
<td>6.48</td>
<td>Potentiodynamic polarization for (1) pure Al, (2) Al-5wt. %fly ash, (3) Al-15wt. %fly ash, and (4) Al-15wt. %fly ash -1.5wt. % Gr after 40 min immersion in 3.5% NaCl solution</td>
<td>141</td>
</tr>
<tr>
<td>6.49</td>
<td>Specimens after the corrosion test</td>
<td>142</td>
</tr>
<tr>
<td>6.50</td>
<td>SEM micrograph of pure Al specimen</td>
<td>144</td>
</tr>
<tr>
<td>6.51</td>
<td>SEM micrograph of Al-15wt. %fly ash composite specimen immersed in 3.5wt % NaCl solution</td>
<td>144</td>
</tr>
<tr>
<td>6.52(a)</td>
<td>SEM micrograph of Al-15wt. %fly ash - 1.5wt. % Gr composite specimen immersed in 3.5wt % NaCl solution</td>
<td>145</td>
</tr>
<tr>
<td>6.52(b)</td>
<td>SEM micrograph of composite specimen Al-15wt. %fly ash -1.5wt. % Gr at a higher magnification</td>
<td>145</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS ABBREVIATIONS

Symbols

R² - Coefficient of determination
R - Correlation coefficient
η - Learning rate
μm - micron
β - Momentum coefficient
n - Number of observations
y - Observed data
ς - Sigmoidal gain
α - Threshold value
F - Thrust

Abbreviations

Al - Aluminium
AMCs - Aluminium Matrix Composites
Al₂O₃ - Aluminium Oxide (alumina)
ASTM - American Society for Testing and Materials
ANOVA - Analysis of Variance
ACM - Applied Corrosion Monitoring
ANN - Artificial Neural Network
BP - Back Propagation
CaO - Calcium Oxide
Cl - Cholrine
CNC - Computer Numerical Control
Cu - Copper
DOE - Design of Experiments
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDM</td>
<td>Electric Discharge Machining</td>
</tr>
<tr>
<td>ECM</td>
<td>Electro Chemical Machining</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Ferrous Oxide</td>
</tr>
<tr>
<td>GRNN</td>
<td>Generalized Regression Neural Network</td>
</tr>
<tr>
<td>Gr</td>
<td>Graphite</td>
</tr>
<tr>
<td>HERF</td>
<td>High Energy High Rate Forming</td>
</tr>
<tr>
<td>HSS</td>
<td>High Speed Steel</td>
</tr>
<tr>
<td>I₀D/C₁D Ratio</td>
<td>Impeller outer dia/ Crucible inner dia ratio</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transducer</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium Oxide (Magnesia)</td>
</tr>
<tr>
<td>MEP</td>
<td>Mean Error Percentage</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>MML</td>
<td>Mechanical Mixed Layer</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>MMCs</td>
<td>Metal Matrix Composites</td>
</tr>
<tr>
<td>MLP</td>
<td>Multi Layer Perceptron</td>
</tr>
<tr>
<td>OCP</td>
<td>Open Circuit Potential</td>
</tr>
<tr>
<td>PCD</td>
<td>Polycrystalline Diamond</td>
</tr>
<tr>
<td>pH</td>
<td>Hydrogen potential</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Method Network</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>S/N Ratio</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon Carbide</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon di oxide</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>SCE</td>
<td>Standard Reference Electrode</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>TiAlN</td>
<td>Titanium Aluminium Nitride</td>
</tr>
<tr>
<td>TiB₂</td>
<td>Titanium Boride</td>
</tr>
<tr>
<td>TiN</td>
<td>Titanium Nitride</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Testing Machine</td>
</tr>
<tr>
<td>Wt</td>
<td>Weight</td>
</tr>
</tbody>
</table>