REFERENCES

Hankins, S.D and H.P. Hockey. 1990. The effect of a liquid seaweed extract from
Ascophyllum nodosum (Fucales, Phaeophyta) on the two spotted red spider mite

Haripriya, K. and P. Poonkodi. 2005. Role of organic mulches and foliar nutrients on

Havale, V.B., R.V. Tawar, N.D. Hage, G.J. Kakad, S.C. Fatherurkar and A.S. Sable. 2008. Effect of growth regulators and chemicals on growth and

Florida. USA.

Henny, R.J. 1980. Gibberellic acid induces flowering in *Dieffenbachia maculate*

Henny, R.J. 1981. Promotion of flowering in Spathiphyllum ‘Mauna Loa’ with

Henny, R.J., D.J. Norman and M.E. Kane. 1999. Gibberellic acid induced

1140 – 1141.

Hetman, J. and K. Pudelska. 1984. Effect of plant age, rooting preparations and

Sabina George and N. Mohanakumaran. 1999. Growth responses of Dendrobium
Sonia-16 to varying light intensities and nutrient regimes. Journal of

Sagar Mohapatra and S. Saravanan. 2006. Effect of different potting media on
growth and flowering of Dendrobium. The Orissa Journal of

Sakai, K. and T. Nakabo. 2004. Two new species of Kyphosus (Kyphosidae) and a
taxonomic review of Kyphosus bigibbus Lacepède from the Indo-Pacific.

quality and yield of flowers in tuberose cv. Single. The Orissa J. Hort., 28

Charasteristics action and utilization of coconut based material. Indian

Schmidt, R.E. 1993. Employment of biostimulants and iron for the enhancement of
turf grass growth and development. Proceedings of the 30th Virginia Turf
grass conference. USA.

* Original(s) not seen.
Annexure - I

Flow chart for the preparation of Panchagavya

(Natarajan, 2002)

Mix cow dung (5 kg) + Cow’s urine (3 litre) + Cow’s milk (2 litre) + Cow’s curd (1 litre) + Cow’s ghee (100 g)

↓ Mix

Sugarcane juice (3 litre) + Tender coconut water (3 litre) + Banana (12 nos)

↓ Mix

Store in earthen pot (mouth covered with muslin cloth)

↓

Regular stirring

↓

Store for 2 to 3 months

↓

Panchagavya

↓

Filter

↓

Panchagavya ready to use
Annexure - II

Flow chart for the preparation of sea weed extract

(Rama Rao, 1990)

Fresh specimens of sea weed
↓
Wash thoroughly to remove all epiphytes and sand particles with tap water
↓
Shade dry for 5 days
↓
Oven dry for 24 hours at 60 ± 5°C
↓
Hand crush
↓
Grind the sample using mixer grinder
↓
Collect the coarse powder
↓
Mix the coarse powder with distilled water in the ratio of 1:20 (w/v)
↓
Autoclave at 121°C ; 20 lbs/in² for 60 minutes
↓
Filter through cheese cloth
↓
Collect the filtrate
↓
Centrifuge the supernatant and dry in an oven at 60 ± 5°C for 48 hr
↓
Collect the 100% sea weed extract
↓
Prepare different concentrations of sea weed extract from 100% sea weed extract using distilled water
Experiment: I - Effect of shade, growing media and their interaction on the production of *Anthurium andreanum* cv. Tropical

PLATE 1

FIELD VIEW OF THE EXPERIMENTAL SITE- EXPERIMENT – I
Experiment II - Effect of nutrients, growth regulators and their interaction on the production of *Anthurium andreanum* cv. Tropical

PLATE 2

FIELD VIEW OF THE EXPERIMENTAL SITE- EXPERIMENT – II
PLATE 3
COMPARISON OF THE BEST TREATMENT PLANTS WITH CONTROL IN EXPERIMENT - II

N₃ × G₁ - 75 per cent shade + coco peat and coconut husk at 1:1 ratio as growing media along with 3 per cent humic acid spray at fortnight intervals + 750 ppm gibberellic acid spray at monthly intervals (N₃ × G₁)

PLATE 4
COMPARISON OF THE BEST TREATMENT FLOWERS WITH CONTROL IN EXPERIMENT – II

N₄ × G₄
PLATE 5
THE BEST TREATMENT FLOWER SPATHE IN EXPERIMENT - II

PLATE 6
THE BEST TREATMENT FLOWER SPADIX IN EXPERIMENT – II

N3 x G1: 75 per cent shade + coco peat and coconut husk at 1:1 ratio as growing media along with 3 per cent humic acid spray at fortnight intervals + 750 ppm gibberellic acid spray at monthly intervals (N3 x G1)
PLATE 7
THE BEST TREATMENT FLOWER WITH HIGHEST VISUAL SCORING
IN EXPERIMENT – II

PLATE 8
HARVESTED FLOWERS OF THE BEST TREATMENT OF EXPERIMENT - II

N₃ × G₁: 75 per cent shade + coco peat and coconut husk at 1:1 ratio as growing media along with 3 per cent humic acid spray at fortnight intervals + 750 ppm gibberellic acid spray at monthly intervals (N₃ × G₁)