Chapter-4

Almost S^*_g-Continuous Functions In Topological Spaces

4.1 Introduction

Almost continuous functions in topological spaces was defined and instigated by authors such as Singal M.K and Singal Asha Rani[65], Hussain[29], Long and Carnahan[38], Noiri.T[39]. They characterized the results of almost continuity. The purpose of this chapter is to introduce almost S^*_g-continuous functions, almost contra S^*_g-continuous functions and completely S^*_g-irresolute functions. We connect almost continuous function with almost S^*_g-continuous functions and establish their relationship. Also we relate S^*_g-continuous functions and almost S^*_g-continuous functions. The basic properties of almost contra S^*_g-continuous functions and completely S^*_g-irresolute functions are also discussed. Further the compositions of various functions are verified.

4.2 Preliminaries

Definition 4.2.1: A subset A of a space (X, τ) is called a regular open set [66] if $A = \text{Int}(\text{Cl}(A))$ and a regular closed set if $A = \text{Cl}(\text{Int}(A))$.

Definition 4.2.2: A function $f: X \rightarrow Y$ is called almost continuous [56] if $f^{-1}(V)$ is open in X for each regular open subset V of Y.

Definition 4.2.3: A function $f: X \rightarrow Y$ is said to be regular set connected [20] if $f^{-1}(V)$ is clopen in X for each regular open subset V of Y.
4.3 Almost S_g^*-Continuous Function

A new function called almost S_g^*-continuous functions in topological spaces are introduced and compared with almost continuous functions. Also its implications and compositions are discussed.

Definition 4.3.1: A mapping $f: X \to Y$ is said to be **almost S_g^*-continuous** if $f^{-1}(V)$ is S_g^*-open in X for every regular open set V in Y.

Example 4.3.2: Let $X = Y = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}$. Here $S_g^*O(X, \tau) = \{\emptyset, X, \{a\}, \{a, b\}\}$ Define $f: (X, \tau) \to (Y, \sigma)$ be an identity map. Then f is almost S_g^*-continuous.

Theorem 4.3.3: Every almost continuous function is almost S_g^*-continuous.

Proof: Let $f: X \to Y$ be a almost continuous function. Let O be a regular open set in Y. Since f is almost continuous, $f^{-1}(O)$ is open in X. Since every open set is S_g^*-open, $f^{-1}(O)$ is S_g^*-open in X. Hence $f: X \to Y$ is almost S_g^*-continuous.

Remark 4.3.4: The converse of the above theorem need not be true as can be seen from the following example.

Example 4.3.5: Let $X = Y = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{b\}, \{d\}, \{b, d\}, \{a, b, c\}\}$, $S_g^*O(X, \tau) = \{\emptyset, X, \{b\}, \{d\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$, $\sigma = \{\emptyset, Y, \{a\}, \{b, c\}\}$, $RO(Y, \sigma) = \{\emptyset, Y, \{a\}, \{b, c\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a) = b$, $f(b) = c$, $f(c) = d$ and $f(d) = a$. Here $f^{-1}\{b, c\} = \{a, b\}$ which is S_g^*O but not open. Hence f is almost S_g^*-continuous but not almost continuous.
Theorem 4.3.6: If $f: (X, \tau) \to (Y, \sigma)$ is almost S^*_g-continuous and (X, τ) is a S^*_g-$T_{1/2}$ space, then f is almost continuous.

Proof: Let U be a regular open set in Y. Since f is almost S^*_g-continuous, $f^{-1}(U)$ is S^*_g-open in X. Since X is a S^*_g-$T_{1/2}$ space, $f^{-1}(U)$ is open in X. Hence f is almost continuous.

Theorem 4.3.7: Every S^*_g-continuous function is almost S^*_g-continuous.

Proof: Let $f: X \to Y$ be a S^*_g-continuous function. Let V be a regular open set in Y. Since every regular open set is open, V is open in Y. Since f is S^*_g-continuous, $f^{-1}(V)$ is S^*_g-open in X. Hence $f: X \to Y$ is almost S^*_g-continuous.

Remark 4.3.8: The converse of the above theorem need not be true as can be seen from the following example.

Example 4.3.9: Let $X = Y = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{b\}, \{c\}, \{a, b, c\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}$. Here $S^*_gO(X, \tau) = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$ and $RO(Y, \sigma) = \{\emptyset, Y\}$. Define $f: (X, \tau) \to (Y, \sigma)$ be an identity map. Here $\{a, b\}$ is open in Y but $f^{-1}\{a, b\} = \{a, b\}$ is not S^*_g-open in X. Hence f is almost S^*_g-continuous but not S^*_g-continuous.

Theorem 4.3.10: Every S^*_g-irresolute function is almost S^*_g-continuous.

Proof: Let $f: X \to Y$ be a S^*_g-irresolute function. Let V be a regular open set in Y. Since every regular open set is open, V is open in Y. Also V is S^*_g-open in Y. Since f is S^*_g-irresolute, $f^{-1}(V)$ is S^*_g-open in X. Hence $f: X \to Y$ is almost S^*_g-continuous.

Remark 4.3.11: The converse of the above theorem need not be true as can be seen from the following example.
Example 4.3.12: Let $X = Y = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}\}$ and
$\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}$. Here $S^*_g O(X, \tau) = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$, $RO(Y, \sigma) = \{\emptyset, Y\}$ and $S^*_g O(Y, \sigma) = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. Clearly f is almost S^*_g-continuous but not S^*_g-irresolute since $\{a, d\}$ is S^*_g-open in Y but $f^{-1}\{a, d\} = \{a\}$ is not S^*_g-open in X.

Theorem 4.3.13: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any two functions and $gof: (X, \tau) \rightarrow (Z, \eta)$ is a composition function. Then the following properties hold.

(i) If f is S^*_g-irresolute and g is almost S^*_g-continuous then gof is almost S^*_g-continuous.

(ii) If f is strongly S^*_g-continuous and g is almost S^*_g-continuous then gof is almost continuous.

(iii) If f is S^*_g-continuous and g is almost continuous then gof is almost S^*_g-continuous.

(iv) If f is slightly S^*_g-continuous and g is regular set connected then gof is almost S^*_g-continuous.

Proof:

(i) Let F be a regular open set in Z. Since g is almost S^*_g-continuous, $g^{-1}(F)$ is S^*_g-open in Y. Also since f is S^*_g-irresolute, $f^{-1}(g^{-1}(F))$ is S^*_g-open in X. But $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$. Hence gof is almost S^*_g-continuous.

(ii) Let F be a regular open set in Z. Since g is almost S^*_g-continuous, $g^{-1}(F)$ is S^*_g-open in Y. Since f is strongly S^*_g-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is open in X. Hence gof is almost continuous.
(iii) Let F be a regular open set in Z. Since g is almost continuous, $g^{-1}(F)$ is open in Y. Since f is S_g^*-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is S_g^*-open in X. Hence gof is almost S_g^*-continuous.

(iv) Let F be a regular open set in Z. Since g is regular set connected, $g^{-1}(F)$ is clopen in Y. Since f is slightly S_g^*-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is S_g^*-open in X. Hence gof is almost S_g^*-continuous.
4.4 Almost Contra S^*_g-Continuous Function

In this section, almost contra S^*_g-continuous functions in topological spaces are introduced and its properties are investigated.

Definition 4.4.1: A mapping $f: X \to Y$ is said to be *almost contra S^*_g-continuous* if $f^{-1}(V)$ is S^*_g-closed in X for every regular open set V in Y.

Example 4.4.2: Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}\}$ and $S^*_gC(X, \tau) = \emptyset, X, \{b\}, \{c\}, \{b, c\}$ and $Y = \{a, b, c\}$ with $\sigma = \emptyset, Y, \{a\}, \{a, b\}$. Define $f: (X, \tau) \to (Y, \sigma)$ be an identity map. Then f is almost S^*_g-continuous.

Theorem 4.4.3: Every contra S^*_g-continuous function is almost contra S^*_g-continuous.

Proof: Let $f: X \to Y$ be a contra S^*_g-continuous function. Let U be a regular open set in Y. Since every regular open set is open, U is open in Y. Since f is contra S^*_g-continuous, $f^{-1}(U)$ is S^*_g-closed in X. Hence $f: X \to Y$ is almost contra S^*_g-continuous.

Remark 4.4.4: The converse of the above theorem need not be true as can be seen from the following example.

Example 4.4.5: Let $X = Y = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{b\}, \{d\}, \{b, d\}, \{a, b, c\}\}$, and $\sigma = \emptyset, Y, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}$. Here $S^*_gC(X, \tau) = \emptyset, X, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}$ and $RO(Y, \sigma) = \emptyset, Y, \{a\}, \{b, c, d\}$.

Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a) = b, f(b) = c, f(c) = d$ and $f(d) = a$. Clearly f is almost contra S^*_g-continuous but not contra S^*_g-continuous because $\{a, b, c\}$ is open in Y implies $f^{-1}\{a, b, c\} = \{a, b, d\}$ which is not S^*_g-closed in X.
Theorem 4.4.6: If $f: (X, \tau) \to (Y, \sigma)$ is almost contra S^*_g-continuous and (X, τ) is S^*_g-locally indiscrete space, then f is almost continuous.

Proof: Let V be a regular open set in Y. Since f is almost contra S^*_g-continuous, $f^{-1}(V)$ is S^*_g-closed in X. Since X is a S^*_g-locally indiscrete space, $f^{-1}(V)$ is open in X. Hence f is almost continuous.

Theorem 4.4.7: Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent.

(i) f is almost contra S^*_g-continuous

(ii) The inverse image of every regular closed set in Y is S^*_g-open in X.

Proof:

(i)\implies(ii): Let F be a regular closed set in Y. Then $Y - F$ is regular open in Y. By (i), $f^{-1}(Y - F) = X - f^{-1}(F)$ is S^*_g-closed in X. This implies $f^{-1}(F)$ is S^*_g-open in X.

(ii)\implies(i): Let G be a regular open set in Y. Then $Y - G$ is regular closed in Y. By (ii), $f^{-1}(Y - G) = X - f^{-1}(G)$ is S^*_g-open in X. This implies $f^{-1}(G)$ is S^*_g-closed in X. Hence f is almost contra S^*_g-continuous.

Theorem 4.4.8: Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent.

(i) f is almost contra S^*_g-continuous

(ii) $f^{-1}(\text{Int}(\text{Cl}(A)))$ is S^*_g-closed in X for every open set A in Y.

(iii) $f^{-1}(\text{Cl}(\text{Int}(B)))$ is S^*_g-open in X for every open subset B of Y.

Proof:

(i)\implies(ii): Let A be an open set in Y. Then $\text{Int}(\text{Cl}(A))$ is regular open in Y. By (i), $f^{-1}(\text{Int}(\text{Cl}(A)))$ is S^*_g-closed in X.

(ii)\implies(i): The proof is obvious.
(i) \implies(iii): Let B be an open set in Y. Then $\text{Cl}(\text{Int}(B))$ is regular closed in Y. By (i), $f^{-1}(\text{Cl}(\text{Int}(B)))$ is S_g^*-open in X.

(iii)\implies(i): The proof is obvious.

Theorem 4.4.9: Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two functions. Then the following properties hold.

(i) If f is S_g^*-irresolute and g is almost contra S_g^*-continuous then gof is almost contra S_g^*-continuous.

(ii) If f is S_g^*-continuous and g is perfectly continuous then gof is almost contra S_g^*-continuous and almost S_g^*-continuous.

(iii) If f is contra S_g^*-continuous and g is almost continuous then gof is almost contra S_g^*-continuous.

(iv) If f is contra S_g^*-continuous and g is regular set connected then gof is almost S_g^*-continuous and almost contra S_g^*-continuous.

Proof:

(i) Let F be a regular open set in Z. Since g is almost contra S_g^*-continuous, $g^{-1}(F)$ is S_g^*-closed in Y. Also since f is S_g^*-irresolute, $f^{-1}(g^{-1}(F))$ is S_g^*-closed in X. But $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$. Hence gof is almost contra S_g^*-continuous.

(ii) Let F be a regular open set in Z implies F is open in Z. Since g is perfectly continuous, $g^{-1}(F)$ is clopen in Y. Since f is S_g^*-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is S_g^*-closed and S_g^*-open in X. Hence gof is almost contra S_g^*-continuous and almost S_g^*-continuous.
(iii) Let F be a regular open set in Z. Since g is almost continuous, $g^{-1}(F)$ is open in Y. Since f is contra S^*_g-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is S^*_g-closed in X. Hence gof is almost contra S^*_g-continuous.

(iv) Let F be a regular open set in Z. Since g is regular set connected, $g^{-1}(F)$ is clopen in Y. Since f is contra S^*_g-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is S^*_g-open and S^*_g-closed in X. Hence gof is almost S^*_g-continuous and almost contra S^*_g-continuous.

Theorem 4.4.10: If a map $f: (X, \tau) \to (Y, \sigma)$ is almost contra S^*_g-continuous, almost continuous and (X, τ) is a $S^*_g-T_{1/2}$ space then f is regular set connected.

Proof: Let V be a regular open set in Y. Since f is almost contra S^*_g-continuous and almost continuous, $f^{-1}(V)$ is S^*_g-closed and open in X. Since (X, τ) is a $S^*_g-T_{1/2}$ space, $f^{-1}(V)$ is closed. Thus $f^{-1}(V)$ is clopen in (X, τ). Hence f is regular set connected.
4.5 Completely S^*_g-Irresolute Function

A new class of function called completely S^*_g-irresolute functions in topological spaces are introduced and certain characterizations of these functions are obtained.

Definition 4.5.1: A mapping $f: X \rightarrow Y$ is said to be completely S^*_g-irresolute if the inverse image of each S^*_g-open subset of Y is regular open in X.

Example 4.5.2: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$, $Y = \{a, b, c\}$, $\sigma = \{\emptyset, Y, \{a, b\}\}$. Here $RO(X, \tau) = \{\emptyset, X\}$, $S^*_g O(Y, \sigma) = \{\emptyset, Y, \{a, b\}\}$. Define a map $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = a, f(b) = f(c) = b$. Then f is completely S^*_g-irresolute.

Theorem 4.5.3: Every completely S^*_g-irresolute function is S^*_g-irresolute.

Proof: Let $f: X \rightarrow Y$ be a completely S^*_g-irresolute function. Let U be a S^*_g-open set in Y. Since f is completely S^*_g-irresolute, $f^{-1}(O)$ is regular open in X. Since every regular open set is open, $f^{-1}(U)$ is open in X. Also since every open set is S^*_g-open, $f^{-1}(U)$ is S^*_g-open in X. Hence $f: X \rightarrow Y$ is S^*_g-irresolute.

Remark 4.5.4: The converse of the above theorem need not be true as can be seen from the following example.

Example 4.5.5: Let $X = Y = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\} = S^*_g O(X, \tau)$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\} = S^*_g O(Y, \sigma)$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = a, f(b) = c$ and $f(c) = b$. Here $\{a, b\}$ is S^*_g-open in (Y, σ) but $f^{-1}\{a, b\} = \{a, c\}$ is S^*_g-open in (X, τ) but not regular open in (X, τ). Hence f is S^*_g-irresolute but not completely S^*_g-irresolute.
Theorem 4.5.6: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function. Then the following are equivalent.

(i) \(f \) is completely \(S^*_g \)-irresolute.

(ii) \(f^{-1}(F) \) is regular closed set in \(X \) for each \(S^*_g \)-closed set \(F \) in \(Y \).

Proof:

(i)\(\Rightarrow \)(ii): Let \(F \) be a \(S^*_g \)-closed set in \(Y \). Then \(Y - F \) is \(S^*_g \)-open in \(Y \). By (i), \(f^{-1}(Y - F) = X - f^{-1}(F) \) is regular open in \(X \). This implies \(f^{-1}(F) \) is regular closed in \(X \).

(ii)\(\Rightarrow \)(i): Let \(G \) be a \(S^*_g \)-open set in \(Y \). Then \(Y - G \) is \(S^*_g \)-closed in \(Y \). By (ii), \(f^{-1}(Y - G) = X - f^{-1}(G) \) is regular closed in \(X \). This implies \(f^{-1}(G) \) is regular open in \(X \). Hence \(f \) is completely \(S^*_g \)-irresolute.

Theorem 4.5.7: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) be any two functions and \(gof: (X, \tau) \rightarrow (Z, \eta) \) is a composition function. Then the following properties hold.

(i) If \(f \) is completely \(S^*_g \)-irresolute and \(g \) is \(S^*_g \)-irresolute then \(gof \) is completely \(S^*_g \)-irresolute.

(ii) If \(f \) is \(S^*_g \)-continuous and \(g \) is completely \(S^*_g \)-irresolute then \(gof \) is \(S^*_g \)-irresolute.

(iii) If \(f \) is strongly \(S^*_g \)-continuous and \(g \) is completely \(S^*_g \)-irresolute then \(gof \) is strongly \(S^*_g \)-continuous.

(iv) If \(f \) is almost \(S^*_g \)-continuous and \(g \) is completely \(S^*_g \)-irresolute then \(gof \) is \(S^*_g \)-irresolute.

(v) If \(f \) is perfectly \(S^*_g \)-continuous and \(g \) is completely \(S^*_g \)-irresolute then \(gof \) is perfectly \(S^*_g \)-continuous.

(vi) If \(f \) is regular set connected and \(g \) is completely \(S^*_g \)-irresolute then \(gof \) is perfectly \(S^*_g \)-continuous.
Proof:

(i) Let F be a S^*_g-open set in Z. Since g is S^*_g-irresolute, $g^{-1}(F)$ is S^*_g-open in Y. Since f is completely S^*_g-irresolute, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is regular open in X. Hence gof is completely S^*_g-irresolute.

(ii) Let F be a S^*_g-open set in Z. Since g is completely S^*_g-irresolute, $g^{-1}(F)$ is regular open in Y. Since every regular open set is open, $g^{-1}(F)$ is open in Y. Since f is S^*_g-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is S^*_g-open in X. Hence gof is S^*_g-irresolute.

(iii) Let F be a S^*_g-open set in Z. Since g is completely S^*_g-irresolute, $g^{-1}(F)$ is regular open in Y. Since every regular open implies open and open implies S^*_g-open, $g^{-1}(F)$ is S^*_g-open in Y. Since f is strongly S^*_g-continuous, $f^{-1}(g^{-1}(F))$ is open in X. Hence gof is strongly S^*_g-continuous.

(iv) Let F be a S^*_g-open set in Z. Since g is completely S^*_g-irresolute, $g^{-1}(F)$ is regular open in Y. Since f is almost S^*_g-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is S^*_g-open in X. Hence gof is S^*_g-irresolute.

(v) Let F be a S^*_g-open set in Z. Since g is completely S^*_g-irresolute, $g^{-1}(F)$ is regular open in Y. Since every regular open implies open and open implies S^*_g-open, $g^{-1}(F)$ is S^*_g-open in Y. Since f is perfectly S^*_g-continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is open and closed in X. Hence gof is perfectly S^*_g-continuous.

(vi) Let F be a S^*_g-open set in Z. Since g is completely S^*_g-irresolute, $g^{-1}(F)$ is regular open in Y. Since f is regular set connected, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is clopen in X. Hence gof is perfectly S^*_g-continuous.
Lemma 4.5.8[38]: Let S be an open subset of a space (X, τ). Then the following hold.

(i) If U is regular open in (X, τ), then so is $U \cap S$ in the subspace (S, τ_s).

(ii) If $B \subset S$ is regular open in (S, τ_s), then there exists a regular open set U in (X, τ), such that $B = U \cap S$.

Theorem 4.5.9: If $f: (X, \tau) \to (Y, \sigma)$ is completely S^*_g- irresolute and A is any open subset of X, then the restriction $f_{/A}: (A, \tau_A) \to (Y, \sigma)$ is completely S^*_g- irresolute.

Proof: Let V be a S^*_g- open subset of Y. By hypothesis, $f^{-1}(V)$ is regular open in X. Since A is open in X, it follows from Lemma 4.5.8 that $(f_{/A})^{-1}(V) = f^{-1}(V) \cap A$ is regular open in A. Hence $f_{/A}$ is completely S^*_g- irresolute.

Remark 4.5.10: From the above results of this chapter we have the following diagrams.

1. completely S^*_g- irresolute \rightarrow S^*_g- irresolute \rightarrow S^*_g- continuous \rightarrow Almost continuous \rightarrow Almost S^*_g- continuous

2. Contra S^*_g- continuous \rightarrow Almost contra S^*_g- continuous