Chapter-2

S^*_g-Continuous Functions in Topological Spaces

2.1 Introduction

The concept of semi-continuity in topological spaces was introduced by Norman Levine[36] in the year 1963. Also semi-generalized continuous functions and semi-generalized irresolute functions were introduced by P.Sundaram[68] in 1991. In this direction we introduce a new function called S^*_g-continuous function. Further we investigated some of its characterizations and placed S^*_g-continuous function between continuous function and semi-continuous function. Continuing this work, some new functions called S^*_g-irresolute map, strongly S^*_g-continuous function, perfectly S^*_g-continuous function, slightly S^*_g-continuous functions and totally S^*_g-continuous functions are also introduced and its properties and compositions are discussed here. The relationship between all these functions are also studied.

2.2. Preliminaries

Definition 2.2.1: A function $f: X \rightarrow Y$ is called a *semi-continuous* [36] if $f^{-1}(U)$ is a semi-open set in (X, τ) for every open set U of (Y, σ).

Definition 2.2.2: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a *sg-continuous* [68] if $f^{-1}(F)$ is a sg -closed set in (X, τ) for every closed set F of (Y, σ).

Definition 2.2.3: A mapping $f:X \rightarrow Y$ is said to be *strongly-continuous* [37] if the inverse image of every subset in Y is both open and closed in X.
Definition 2.2.4: A mapping $f: X \rightarrow Y$ is said to be perfectly continuous\cite{[55]} if the inverse image of every open set in Y is open and closed in X.

Definition 2.2.5: A function $f: X \rightarrow Y$ is called slightly continuous\cite{[32]} if the inverse image of every clopen set in Y is open in X.

2.3 S^*_g-Continuous Function

The concept of S^*_g-continuous functions and a new space called S^*_g-$T_{1/2}$ space in topological spaces are introduced in this section and their relations with other continuous maps are studied.

Definition 2.3.1: A mapping $f: X \rightarrow Y$ is said to be S^*_g-continuous if the inverse image of every open set in Y is S^*_g-open in X.

Theorem 2.3.2: Every continuous function is S^*_g-continuous.

Proof: Let $f: X \rightarrow Y$ be a continuous function. Then for every open set U in Y, $f^{-1}(U)$ is open in X. Since every open set is S^*_g-open, $f^{-1}(U)$ is S^*_g-open in X. Hence $f: X \rightarrow Y$ is S^*_g-continuous.

Remark 2.3.3: The converse of the above theorem need not be true as can be seen from the following example.

Example 2.3.4: Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}\}$ and $S^*_gO(X, \tau) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $Y = \{d, e\}$ with $\sigma = \{\emptyset, Y, \{d\}\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = f(b) = d$ and $f(c) = e$. Here $f^{-1}\{d\} = \{a, b\}$ which is S^*_gO but not open. Hence f is S^*_g-continuous but not continuous.
Theorem 2.3.5: Every S_g^*-continuous function is semi-continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a S_g^*-continuous function. Let V be an open set in Y. Since f is S_g^*-continuous, $f^{-1}(V)$ is S_g^*-open in X. But every S_g^*-open is semi-open. Therefore $f^{-1}(V)$ is semi-open in X. Hence f is semi-continuous.

Remark 2.3.6: The converse of the above theorem need not be true as can be seen from the following example.

Example 2.3.7: Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. In this space $S_g^*O(X, \tau) = \tau$. $SO(X, \tau) = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{b, c\}\}$ and $Y = \{e, f, g\}$ with $\sigma = \{\emptyset, Y, \{e, f\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a) = e, f(b) = f$ and $f(c) = g$. Here $f^{-1}\{e, f\} = \{a, b\}$ which is semi-open but not S_g^*-open. Hence the remark.

Theorem 2.3.8: Every S_g^*-continuous function is semi-generalized continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a S_g^*-continuous function. Let G be an open set in Y. Since f is S_g^*-continuous, $f^{-1}(G)$ is S_g^*-open in X. Since every S_g^*-open is semi-generalized open, $f^{-1}(G)$ is semi-generalized open in X. Hence f is semi-generalized continuous.

Theorem 2.3.9: If $f: X \to Y$ is S_g^*-continuous and $g: Y \to Z$ is continuous, then $gof: X \to Z$ is S_g^*-continuous.

Proof: Let V be an open set in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. Also since f is S_g^*-continuous, $f^{-1}(g^{-1}(V))$ is S_g^*-open in X. Therefore $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is S_g^*-open in X. Hence gof is S_g^*-continuous.

Definition 2.3.10: A topological space (X, τ) is said to be $S_g^*-T_{1/2}$ space if every S_g^*-open set of X is open in X.
Remark 2.3.11: In $S^*_g-T_{1/2}$ space, the concept of continuous and S^*_g-continuous functions coincides.

Theorem 2.3.12: Let $f: X \to Y$ be a mapping from a topological space X into a topological space Y. Then f is S^*_g-continuous iff the inverse image of every closed set in Y is S^*_g-closed in X.

Proof: **Necessity.** Let A be any closed set in Y. Then $Y \setminus A$ is open in X. Since f is S^*_g-continuous, $f^{-1}(Y \setminus A)$ is S^*_g-open in X. Then $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$ is S^*_g-open in X. Hence $f^{-1}(A)$ is S^*_g-closed in X.

Sufficiency. Let O be an open set in Y then $Y \setminus O$ is closed in X. By the assumption $f^{-1}(Y \setminus O)$ is S^*_g-closed in X. Therefore $f^{-1}(Y \setminus O) = X \setminus f^{-1}(O)$ is S^*_g-closed in X which implies $f^{-1}(O)$ is S^*_g-open in X. Hence f is S^*_g-continuous.

Theorem 2.3.13: If $f: X \to Y$ is S^*_g-continuous, then $f(S^*_g Cl(A)) \subseteq Cl(f(A))$.

Proof: Since $f(A) \subseteq Cl(f(A))$, $A \subseteq f^{-1}(Cl(f(A)))$. Since f is S^*_g-continuous and $Cl(f(A))$ is a closed set in Y, $f^{-1}(Cl(f(A)))$ is S^*_g-closed set in X. Therefore $S^*_g Cl(A) \subseteq f^{-1}(Cl(f(A)))$. This implies $f(S^*_g Cl(A)) \subseteq Cl(f(A))$.

Theorem 2.3.14: Let X and Y be any topological spaces. If $f: X \to Y$ be a mapping then the following statements are equivalent.

(i) f is S^*_g-continuous.

(ii) The inverse image of every closed set in Y is S^*_g-closed in X.

(iii) $S^*_g Cl(f^{-1}(A)) \subseteq f^{-1}(Cl(A))$ for every set A in Y.

(iv) $f(S^*_g Cl(A)) \subseteq Cl(f(A))$ for every set A in X.

(v) $f^{-1}(Int(U)) \subseteq S^*_g Int(f^{-1}(U))$ for every set U in Y.

25
Proof: (i)⇒(ii) Follows from theorem 2.3.12

(ii)⇒(iii) Let A be any subset of Y. Then Cl(A) is closed in Y. Therefore by (ii),
$f^{-1}(Cl(A))$ is S^*_g-closed in X. Therefore $f^{-1}(Cl(A)) = S^*_g Cl(f^{-1}(Cl(A)) \supseteq S^*_g Cl(f^{-1}(A))$.

(iii)⇒(iv) Let A be any open subset of X. By (iii), $f^{-1}(Cl(A)) \supseteq S^*_g Cl(f^{-1}(A)) \supseteq S^*_g Cl(A)$. Hence $f(S^*_g Cl(A)) \subseteq Cl(f(A))$

(iv)⇒(v) Suppose $f(S^*_g Cl(A)) \subseteq Cl(f(A))$ for every set A in X. Then $S^*_g Cl(A)) \subseteq f^{-1}(Cl(f(A)))$ which implies $X - S^*_g Cl(A) \supseteq X - f^{-1}(Cl(f(A)))$ then $S^*_g Int(X - A) \supseteq f^{-1}(Int(Y - f(A)))$. Therefore $S^*_g Int(f^{-1}(U)) \supseteq f^{-1}(Int(U))$ for every set U=Y − f(A) in Y.

(v)⇒(i) Let A be an open set in Y. Then $f^{-1}(Int(A)) \subseteq S^*_g Int(f^{-1}(A))$ which implies $f^{-1}(A) \subseteq S^*_g Int(f^{-1}(A))$. Also since $f^{-1}(A) \supseteq S^*_g Int(f^{-1}(A))$. Hence $f^{-1}(A) = S^*_g Int(f^{-1}(A))$. Therefore $f^{-1}(A)$ is S^*_g-open in X. So (i).
2.4 S^*_g-irresolute Map

S^*_g-irresolute maps are defined and it is proved that the composition of two S^*_g-irresolute maps is again a S^*_g-irresolute map. Some characterization of S^*_g-irresolute maps are also elucidated.

Definition 2.4.1: A map $f: X \to Y$ is said to be S^*_g-irresolute if the inverse image of every S^*_g-open set in Y is S^*_g-open in X.

Remark 2.4.2: A map $f: X \to Y$ is S^*_g-irresolute if the inverse image of every S^*_g-closed set in Y is S^*_g-closed in X.

Theorem 2.4.3: If $f: X \to Y$ is a S^*_g-irresolute map then f is S^*_g-continuous.

Proof: Let O be an open set in Y. Since every open set is S^*_g-open, O is S^*_g-open in Y. Since f is S^*_g-irresolute, $f^{-1}(O)$ is S^*_g-open in X. Hence f is S^*_g-continuous.

Remark 2.4.4: The converse of the above theorem need not be true as can be seen from the following example.

Example 2.4.5: Let $X = Y = \{a, b, c\}$ with $\tau = \emptyset, X, \{a\}, \{c\}, \{a, c\}$ and $\sigma = \emptyset, Y, \{a\}, \{a, b\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a) = b, f(b) = c$ and $f(c) = a$. Here $\tau = S^*_gO(X, \tau)$ and $S^*_gO(Y, \sigma) = \emptyset, X, \{a\}, \{a, b\}, \{a, c\}$.

Since $f^{-1}\{a, c\} = \{b, c\}$ is not S^*_g-open in X, f is not S^*_g-irresolute.

Theorem 2.4.6: Let $f: X \to Y$ be a S^*_g-continuous map from X into Y and Y is S^*_g-$T_{1/2}$ space. Then f is S^*_g-irresolute.

Proof: Let A be a S^*_g-open set in Y. Since Y is S^*_g-$T_{1/2}$, A is an open set in Y. Since f is S^*_g-continuous, $f^{-1}(A)$ is S^*_g-open in X. Hence f is S^*_g-irresolute.
Theorem 2.4.7: Let X, Y and Z be any three topological spaces. If $f : X \rightarrow Y$ is S^*_g-irresolute and $g : Y \rightarrow Z$ is S^*_g-irresolute, then $gof : X \rightarrow Z$ is S^*_g-irresolute.

Proof: Let U be an S^*_g-open set in Z. Since g is S^*_g-irresolute, $g^{-1}(U)$ is S^*_g-open in Y. Also since f is S^*_g-irresolute, $f^{-1}(g^{-1}(U))$ is S^*_g-open in X. Therefore $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is S^*_g-open in X. Hence gof is S^*_g-irresolute.

Theorem 2.4.8: If $f : X \rightarrow Y$ is S^*_g-irresolute and $g : Y \rightarrow Z$ is S^*_g-continuous, then $gof : X \rightarrow Z$ is S^*_g-continuous.

Proof: Let F be an open set in Z. Since g is S^*_g-continuous, $g^{-1}(F)$ is S^*_g-open in Y. Also since f is S^*_g-irresolute, $f^{-1}(g^{-1}(F))$ is S^*_g-open in X. Therefore $(gof)^{-1}(F)$ is S^*_g-open in X. Hence gof is S^*_g-continuous.
2.5 Strongly S_g^*-continuous function

Levine[37] introduced the concept of strongly continuous maps. In this section, we introduce the concept of strongly S_g^*-continuous function and discuss some results using this function.

Definition 2.5.1: A mapping $f: X \to Y$ is said to be *strongly S_g^*-continuous* if the inverse image of every S_g^*-open set in Y is open in X.

Theorem 2.5.2: If $f: X \to Y$ is strongly S_g^*-continuous then f is a continuous function.

Proof: Let G be any open set in Y. Since every open set is S_g^*-open, G is S_g^*-open in Y. Since $f: X \to Y$ is strongly S_g^*-continuous, $f^{-1}(G)$ is open in X. Hence f is continuous.

Remark 2.5.3: The converse of the above theorem need not be true as can be seen from the following example.

Example 2.5.4: Let $X = Y = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a) = b$, $f(b) = c$ and $f(c) = a$. Here $\tau = S_g^*O(X, \tau)$ and $S_g^*O(Y, \sigma) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$. Here f is continuous but not strongly S_g^*-continuous, since $f^{-1}\{a, c\} = \{b, c\}$ is not open in X.

Theorem 2.5.5: A map $f: X \to Y$ is strongly S_g^*-continuous if and only if the inverse image of every S_g^*-closed set in Y is closed in X.

Proof: Suppose that f is strongly S_g^*-continuous. Let B be any S_g^*-closed set in Y. Then B^c is S_g^*-open in Y. Since f is strongly S_g^*-continuous, $f^{-1}(B^c)$ is open in X. But $f^{-1}(B^c) = f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$. Hence $f^{-1}(B)$ is closed in X.

Conversely suppose that the inverse image of every S_g^*-closed set in Y is closed in X. Let G be any S_g^*-open set in Y. Then G^c is S_g^*-closed set in Y. By assumption, $f^{-1}(G^c)$ is
closed in X. But $f^{-1}(G^*) = X \setminus f^{-1}(G)$. Hence $f^{-1}(G)$ is open in X. Therefore f is strongly S^*_g-continuous.

Theorem 2.5.6: If $f: X \to Y$ is strongly S^*_g-continuous and $g: Y \to Z$ is S^*_g-continuous, then $gof: X \to Z$ is continuous.

Proof: Let V be an open set in Z. Since $g: Y \to Z$ is S^*_g-continuous, $g^{-1}(V)$ is S^*_g-open in Y. Also since f is strongly S^*_g-continuous, $f^{-1}(g^{-1}(V))$ is open in X. Therefore $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is open in X. Hence gof is continuous.

Theorem 2.5.7: If $f: X \to Y$ is strongly S^*_g-continuous and $g: Y \to Z$ is S^*_g-irresolute, then $gof: X \to Z$ is strongly S^*_g-continuous.

Proof: Let G be an S^*_g-open set in Z. Since $g: Y \to Z$ is S^*_g-irresolute, $g^{-1}(G)$ is S^*_g-open in Y. Also since f is strongly S^*_g-continuous, $f^{-1}(g^{-1}(G)) = (gof)^{-1}(G)$ is open in X. Hence $gof: X \to Z$ is strongly S^*_g-continuous.

Theorem 2.5.8: If $f: X \to Y$ is S^*_g-continuous and $g: Y \to Z$ is strongly S^*_g-continuous, then $gof: X \to Z$ is S^*_g-irresolute.

Proof: Let U be an S^*_g-open set in Z. Since g is strongly S^*_g-continuous, $g^{-1}(U)$ is open in Y. Also since f is S^*_g-continuous, $f^{-1}(g^{-1}(U))$ is S^*_g-open in X. But $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$. Hence $gof: X \to Z$ is S^*_g-irresolute.

Theorem 2.5.9: Every strongly S^*_g-continuous function is S^*_g-continuous function.

Proof: Let $f: X \to Y$ be strongly-S^*_g-continuous. Let O be any open set in Y. Since every open set is S^*_g-open, O is S^*_g-open in Y. Therefore $f^{-1}(O)$ is open in X which implies $f^{-1}(O)$ is S^*_g-open in X. Hence f is S^*_g-continuous.

Remark 2.5.10: The converse of the above theorem need not be true as can be seen from the following example.
Example 2.5.11: Let \(X = Y = \{a, b, c\} \) with \(\tau = \emptyset, X, \{a\}, \{c\}, \{a, c\} \) and \(\sigma = \emptyset, Y, \{a\}, \{a, b\} \). Define \(f: (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a \), \(f(b) = c \) and \(f(c) = b \). Then \(\tau = S^*_g X, \tau \) and \(S^*_g \sigma = \emptyset, Y, \{a\}, \{a, b\}, \{a, c\} \). Here \(\{a, c\} \) is \(S^*_g \)-open in \(Y \), but \(f^{-1}\{a, c\} = \{a, b\} \) is not open in \(X \). So \(f \) is not strongly \(S^*_g \)-continuous.

Theorem 2.5.12: Every strongly continuous function is strongly \(S^*_g \)-continuous function.

Proof: Let \(f:X \rightarrow Y \) be strongly continuous. Let \(O \) be any \(S^*_g \)-open set in \(Y \). Since \(f \) is strongly continuous, \(f^{-1}(O) \) is open and closed in \(X \). Hence \(f \) is strongly \(S^*_g \)-continuous.

Remark 2.5.13: The converse of the above theorem need not be true as can be seen from the following example.

Example 2.5.14: Let \(X = Y = \{a, b, c\} \) with \(\tau = \emptyset, X, \{a\}, \{b\}, \{a, b\} \) and \(\sigma = \emptyset, Y, \{a, b\} \). The identity map \(f: (X, \tau) \rightarrow (Y, \sigma) \) is strongly \(S^*_g \)-continuous but \(f \) is not strongly continuous. For the subset \(\{a, b\} \) of \((Y, \sigma) \), \(f^{-1}\{a, b\} = \{a, b\} \) is open in \((X, \tau) \) but not closed in \((X, \tau) \).

Theorem 2.5.15: If \(f:X \rightarrow Y \) is strongly \(S^*_g \)-continuous and \(g:Y \rightarrow Z \) is strongly \(S^*_g \)-continuous, then \(gof: X \rightarrow Z \) is strongly \(S^*_g \)-continuous.

Proof: Let \(O \) be any \(S^*_g \)-open set in \(Z \). Since \(g \) is strongly \(S^*_g \)-continuous, \(g^{-1}(O) \) is open in \(Y \). By Theorem 1.3.3, \(g^{-1}(O) \) is \(S^*_g \)-open in \(Y \). Since \(f \) is strongly \(S^*_g \)-continuous, \(f^{-1}(g^{-1}(O)) \) is open in \(X \). Hence \(gof \) is strongly \(S^*_g \)-continuous.

Theorem 2.5.16: If \(f:X \rightarrow Y \) is continuous and \(g:Y \rightarrow Z \) is strongly \(S^*_g \)-continuous, then \(gof: X \rightarrow Z \) is strongly \(S^*_g \)-continuous.

Proof: Let \(O \) be any \(S^*_g \)-open set in \(Z \). Since \(g:Y \rightarrow Z \) is strongly \(S^*_g \)-continuous, \(g^{-1}(O) \) is open in \(Y \). Also since \(f \) is continuous, \(f^{-1}(g^{-1}(O)) \) is open in \(X \). Hence \(gof \) is strongly \(S^*_g \)-continuous.
Theorem 2.5.17: Let \((X,\tau)\) be any topological spaces and \(Y\) be a \(S^*_g-T_{1/2}\) space and \(f:X \to Y\) be a map. Then the following are equivalent:

(i) \(f\) is strongly \(S^*_g\)-continuous

(ii) \(f\) is continuous.

Proof: (i)⇒(ii) Let \(U\) be any open set in \(Y\). By Theorem 1.3.3, \(U\) is \(S^*_g\)-open in \(Y\). Then by (i), \(f^{-1}(U)\) is open in \(X\). Hence \(f\) is continuous.

(ii)⇒(i) Let \(O\) be any \(S^*_g\) open set in \(Y\). Since \(Y\) is a \(S^*_g-T_{1/2}\) space, \(O\) is open in \(Y\). Then by (ii), \(f^{-1}(U)\) is open in \(X\). Hence \(f\) is strongly \(S^*_g\)-continuous.

Theorem 2.5.18: Let \((X,\tau)\) be any topological spaces and \(Y\) be a \(S^*_g-T_{1/2}\) space and \(f:X \to Y\) be a map. Then the following are equivalent:

(i) \(f\) is \(S^*_g\)-irresolute

(ii) \(f\) is strongly \(S^*_g\)-continuous.

(iii) \(f\) is continuous

(iv) \(f\) is \(S^*_g\)-continuous.

Proof: The proof is straightforward.
2.6 Perfectly S^*_g-continuous function

In this section, we introduce the concept of perfectly S^*_g-continuous function and discuss some results using this function.

Definition 2.6.1: A mapping $f: X \to Y$ is said to be **perfectly S^*_g-continuous** if the inverse image of every S^*_g-open set in Y is open and closed in X.

Theorem 2.6.2: If a map $f: X \to Y$ is perfectly S^*_g-continuous then it is strongly S^*_g-continuous.

Proof: Let G be any S^*_g-open set in Y. Since $f: X \to Y$ is perfectly S^*_g-continuous, $f^{-1}(G)$ is open in X. Hence f is strongly S^*_g-continuous.

Remark 2.6.3: The converse of the above theorem is not true as seen from the following example.

Example 2.6.4: Let $X = Y = \{a, b, c\}$ with $\tau=\{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$. Here $S^*_g O(X, \tau) = \tau$. Define $f: (X, \tau) \to (X, \tau)$ as an identity map. Then f is strongly S^*_g-continuous but not perfectly S^*_g-continuous, since $f^{-1}\{a\} = \{a\}$ is open in X but not closed in X.

Theorem 2.6.5: A map $f: X \to Y$ is perfectly S^*_g-continuous if and only if $f^{-1}(G)$ is both open and closed in X for every S^*_g-closed set G in Y.

Proof: Assume that f is perfectly S^*_g-continuous. Let F be any S^*_g-closed set in Y. Then F^c is S^*_g-open set in Y. Since f is perfectly S^*_g-continuous, $f^{-1}(F^c)$ is both open and closed in X. But $f^{-1}(F^c) = X \setminus f^{-1}(F)$. Hence $f^{-1}(F)$ is both open and closed in X.

Conversely assume that the inverse image of every S^*_g-closed set in Y is both open and closed in X. Let G be any S^*_g-open set in Y. Then G^c is S^*_g-closed set in Y. By assumption
$f^{-1}(G^c)$ is both open and closed in X. But $f^{-1}(G^c) = X \setminus f^{-1}(G)$ and so $f^{-1}(G)$ is both open and closed in X. Therefore f is perfectly S_g^*-continuous.

Theorem 2.6.6: Every perfectly S_g^*-continuous function is perfectly continuous.

Proof: Let $f: X \to Y$ be perfectly S_g^*-continuous and O be any open set in Y. Since every open set is S_g^*-open, O is S_g^*-open in Y. Therefore $f^{-1}(O)$ is both open and closed in X. Hence f is perfectly continuous.

Remark 2.6.7: The converse of the above theorem need not be true as can be seen from the following example.

Example 2.6.8: Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $Y = \{d, e, f\}$ with $\sigma = \{\emptyset, Y, \{d\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a) = d, f(b) = f$ and $f(c) = e$. Then $\tau = S_g^*O(X, \tau)$ and $S_g^*O(Y, \sigma) = \{\emptyset, Y, \{d\}, \{d, e\}, \{d, f\}\}$. Here $\{d, e\}$ and $\{d, f\}$ are S_g^*-open in Y, but $f^{-1}\{d, e\} = \{a, c\}$ and $f^{-1}\{d, f\} = \{a, b\}$ are not open as well as not closed in X. So f is not perfectly S_g^*-continuous.

Theorem 2.6.9: Let $f: (X, \tau) \to (Y, \sigma)$ be strongly S_g^*-continuous. Then f is perfectly S_g^*-continuous if (X, τ) is a discrete topology.

Proof: Let U be any S_g^*-open set in (Y, σ). By hypothesis, $f^{-1}(U)$ is open in (X, τ). Since (X, τ) is a discrete topology, $f^{-1}(U)$ is closed in (X, τ). That is $f^{-1}(U)$ is both open and closed in (X, τ). Hence f is perfectly S_g^*-continuous.

Theorem 2.6.10: If $f: X \to Y$ is perfectly S_g^*-continuous and $g: Y \to Z$ is perfectly S_g^*-continuous, then $g \circ f: X \to Z$ is perfectly S_g^*-continuous.

Proof: Let O be any S_g^*-open set in Z. Since g is perfectly S_g^*-continuous, $g^{-1}(O)$ is both open and closed in Y. By Theorem 1.3.3, $g^{-1}(O)$ is both S_g^*-open and S_g^*-closed in $Y,$
Since f is perfectly-S^*_g-continuous, $f^{-1}(g^{-1}(O))$ is open and closed in X. Hence gof is perfectly-S^*_g-continuous.

Theorem 2.6.11: If $f:X \to Y$ is continuous and $g:Y \to Z$ is perfectly S^*_g-continuous, then $gof:X \to Z$ is perfectly S^*_g-continuous.

Proof: Let O be any S^*_g-open set in Z. Since g is perfectly S^*_g-continuous, $g^{-1}(O)$ is both open and closed in Y. Since f is continuous, $f^{-1}(g^{-1}(O))$ is open and closed in X. Hence gof is perfectly S^*_g-continuous.

Theorem 2.6.12: If $f:X \to Y$ is perfectly S^*_g-continuous and $g:Y \to Z$ is S^*_g-irresolute, then $gof:X \to Z$ is perfectly S^*_g-continuous.

Proof: Let O be any S^*_g-open set in Z. Since g is S^*_g-irresolute, $g^{-1}(O)$ is S^*_g-open in Y. Since f is perfectly S^*_g-continuous, $f^{-1}(g^{-1}(O))$ is both open and closed in X. Hence gof is perfectly S^*_g-continuous.

Theorem 2.6.13: If $f:X \to Y$ is contra-continuous and $g:Y \to Z$ is perfectly S^*_g-continuous, then $gof:X \to Z$ is perfectly S^*_g-continuous.

Proof: Let O be any S^*_g-open set in Z. Since g is perfectly S^*_g-continuous, $g^{-1}(O)$ is both open and closed in Y. Since f is contra-continuous, $f^{-1}(g^{-1}(O))$ is closed and open in X. Hence gof is perfectly S^*_g-continuous.

Theorem 2.6.14: If $f:X \to Y$ is perfectly S^*_g-continuous and $g:Y \to Z$ is S^*_g-continuous, then $gof:X \to Z$ is perfectly continuous.

Proof: Let O be any open set in Z. Since g is S^*_g-continuous, $g^{-1}(O)$ is S^*_g-open in Y. Since f is perfectly S^*_g-continuous, $f^{-1}(g^{-1}(O))$ is both open and closed in X. Hence gof is perfectly continuous.
Theorem 2.6.15: If \(f: X \to Y \) is perfectly-continuous and \(g: Y \to Z \) is strongly \(S_g^* \)-continuous, then \(gof: X \to Z \) is perfectly \(S_g^* \)-continuous.

Proof: Let \(O \) be any \(S_g^* \)-open set in \(Z \). Since \(g \) is strongly-\(S_g^* \)-continuous, \(g^{-1}(O) \) is open in \(Y \). Since \(f \) is perfectly-continuous, \(f^{-1}(g^{-1}(O)) \) is both open and closed in \(X \). Hence \(gof \) is perfectly \(S_g^* \)-continuous.
2.7 Slightly S_g^*-continuous function

In 1997, Slightly continuity was introduced by Jain[32] and has been applied for semi-open and pre open sets by Nour[59] and Baker[5] respectively. In this section, slightly S_g^*-continuous has been introduced for S_g^*-open sets and various properties are discussed. Also the relationship between other functions are established.

Definition 2.7.1: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be *slightly S_g^*-continuous* at a point $x \in X$ if for each subset V of Y containing $f(x)$, there exists a S_g^*-open subset U in X containing x such that $f(U) \subseteq V$. The function f is said to be slightly S_g^*-continuous if f is slightly S_g^*-continuous at each of its points.

Example 2.7.2: Let $X = \{a, b, c\} = Y$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. $S_g^* O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. The function $f: (X, \tau) \rightarrow (Y, \sigma)$ is defined as $f(a) = c, f(b) = a, f(c) = b$ is slightly S_g^*-continuous.

Proposition 2.7.3: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be slightly S_g^*-continuous iff the inverse image of every clopen set in Y is S_g^*-open in X.

Proof: Suppose f is slightly S_g^*-continuous. Let V be a clopen set in Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exists a S_g^*-open set U_x such that $x \in U_x$ and $f(U_x) \subseteq V$. Now $x \in U_x \subseteq f^{-1}(V)$. And $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Since arbitrary union of S_g^*-open sets is S_g^*-open, $f^{-1}(V)$ is S_g^*-open in X.

Conversely, let $f(x) \in V$ where V is a clopen set in Y. Since f is slightly S_g^*-continuous, $x \in f^{-1}(V)$ where $f^{-1}(V)$ is S_g^*-open in X. Let $U = f^{-1}(V)$. Then U is S_g^*-open in X, $x \in U$ and $f(U) \subseteq V$. Then f is slightly S_g^*-continuous.
Theorem 2.7.4: Let \(f: (X, \tau) \to (Y, \sigma) \) be a function then the following are equivalent.

1. \(f \) is slightly \(S^*_g \)-continuous.
2. The inverse image of every clopen set \(V \) of \(Y \) is \(S^*_g \)-open in \(X \).
3. The inverse image of every clopen set \(V \) of \(Y \) is \(S^*_g \)-closed in \(X \).
4. The inverse image of every clopen set \(V \) of \(Y \) is \(S^*_g \)-clopen in \(X \).

Proof:

(1) \(\Rightarrow \) (2): Follows from Proposition 2.7.3.

(2) \(\Rightarrow \) (3): Let \(V \) be a clopen set in \(Y \) which implies \(V^c \) is clopen in \(Y \). By (2), \(f^{-1}(V^c) = (f^{-1}(V))^c \) is \(S^*_g \)-open in \(X \). Therefore \(f^{-1}(V) \) is \(S^*_g \)-closed in \(X \).

(3) \(\Rightarrow \) (4): By (2) and (3) \(f^{-1}(V) \) is \(S^*_g \)-clopen in \(X \).

(4) \(\Rightarrow \) (1): Let \(V \) be a clopen subset of \(Y \) containing \(f(x) \). By (4) \(f^{-1}(V) \) is \(S^*_g \)-clopen in \(X \). Put \(U = f^{-1}(V) \) then \(f(U) \subseteq V \). Hence \(f \) is slightly \(S^*_g \)-continuous.

Theorem 2.7.5: Every slightly continuous function is slightly \(S^*_g \)-continuous.

Proof: Let \(f: X \to Y \) be slightly continuous. Let \(U \) be a clopen set in \(Y \). Then \(f^{-1}(U) \) is open in \(X \). Since every open set is \(S^*_g \)-open, \(f^{-1}(U) \) is \(S^*_g \)-open. Hence \(f \) is slightly \(S^*_g \)-continuous.

Remark 2.7.6: The converse of the above theorem need not be true as can be seen from the following example

Example 2.7.7: Let \(X = \{a, b, c, d\} \) with \(\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \). Then \(S^*_gO(X, \tau) = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\} \). Let \(Y = \{p, q, r\} \) with \(\sigma = \{Y, \emptyset, \{p\}, \{q, r\}\} \). Define \(f: (X, \tau) \to (Y, \sigma) \) by \(f(a) = p \), \(f(b) = q \) and \(f(c) = f(d) = r \). Hence \(f^{-1}\{q, r\} = \{b, c, d\} \) is \(S^*_g \)-open but not open in \(X \). Thus \(f \) is slightly \(S^*_g \)-continuous but not slightly continuous.
Theorem 2.7.8: Every S^*_g-continuous function is slightly S^*_g-continuous.

Proof: Let $f : X \rightarrow Y$ be a S^*_g-continuous function. Let U be a clopen set in Y. Then $f^{-1}(U)$ is S^*_g-open in X and S^*_g-closed in X. Hence f is slightly S^*_g-continuous.

Remark 2.7.9: The converse of the above theorem need not be true as can be seen from the following example.

Example 2.7.10: Let $X = \{a, b, c\}, Y = \{p, q\}$. $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} = S^*_gO(X, \tau)$. $\sigma = \{Y, \emptyset, \{p\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = q, f(b) = f(c) = p$. The function f is slightly S^*_g-continuous but not S^*_g-continuous since $f^{-1}\{p\} = \{b, c\}$ is not S^*_g-open in X.

Theorem 2.7.11: If the function $f : (X, \tau) \rightarrow (Y, \sigma)$ is slightly S^*_g-continuous and (Y, σ) is a locally indiscrete space then f is S^*_g-continuous.

Proof: Let U be an open subset of Y. Since Y is locally indiscrete, U is closed in Y. Since f is slightly S^*_g-continuous, $f^{-1}(U)$ is S^*_g-open in X. Hence f is S^*_g-continuous.

Theorem 2.7.12: If the function $f : (X, \tau) \rightarrow (Y, \sigma)$ is slightly S^*_g-continuous and (X, τ) is a $S^*_g-T_{1/2}$ space then f is slightly continuous.

Proof: Let U be a clopen subset of Y. Since f is slightly S^*_g-continuous, $f^{-1}(U)$ is S^*_g-open in X. Since X is a $S^*_g-T_{1/2}$ space, $f^{-1}(U)$ is open in X. Hence f is slightly continuous.

Theorem 2.7.13: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be function

(i) If f is S^*_g-irresolute and g is slightly S^*_g-continuous then $gof : (X, \tau) \rightarrow (Z, \eta)$ is slightly S^*_g-continuous.

(ii) If f is S^*_g-irresolute and g is S^*_g-continuous then gof is slightly S^*_g-continuous.
(iii) If \(f \) is \(S^*_g \)-irresolute and \(g \) is slightly continuous then \(gof \) is slightly \(S^*_g \)-continuous.

(iv) If \(f \) is \(S^*_g \)-continuous and \(g \) is slightly continuous then \(gof \) is slightly \(S^*_g \)-continuous.

(v) If \(f \) is strongly \(S^*_g \)-continuous and \(g \) is slightly \(S^*_g \)-continuous then \(gof \) is slightly continuous.

(vi) If \(f \) is slightly \(S^*_g \)-continuous and \(g \) is perfectly \(S^*_g \)-continuous then \(gof \) is \(S^*_g \)-irresolute.

(vii) If \(f \) is slightly \(S^*_g \)-continuous and \(g \) is contra-continuous then \(gof \) is slightly \(S^*_g \)-continuous.

Proof:

(i) Let \(U \) be a clopen set in \(Z \). Since \(g \) is slightly \(S^*_g \)-continuous, \(g^{-1}(U) \) is \(S^*_g \)-open in \(Y \). Since \(f \) is \(S^*_g \)-irresolute, \(f^{-1}(g^{-1}(U)) \) is \(S^*_g \)-open in \(X \). Since \((gof)^{-1}(U) = f^{-1}(g^{-1}(U)) \), \(gof \) is slightly \(S^*_g \)-continuous.

(ii) Let \(U \) be a clopen set in \(Z \). Since \(g \) is \(S^*_g \)-continuous, \(g^{-1}(U) \) is \(S^*_g \)-open in \(Y \). Also since \(f \) is \(S^*_g \)-irresolute, \(f^{-1}(g^{-1}(U)) \) is \(S^*_g \)-open in \(X \). Hence \(gof \) is slightly \(S^*_g \)-continuous.

(iii) Let \(U \) be a clopen set in \(Z \). Then \(g^{-1}(U) \) is \(S^*_g \)-open in \(Y \). Therefore \(f^{-1}(g^{-1}(U)) \) is \(S^*_g \)-open in \(X \), since \(f \) is \(S^*_g \)-irresolute. Hence \(gof \) is slightly \(S^*_g \)-continuous.
(iv) Let U be a clopen set in Z. Then $g^{-1}(U)$ is open in Y, since g is slightly continuous. Also since f is S_g^*-continuous. Also since f is S_g^*-continuous, $f^{-1}(g^{-1}(U))$ is S_g^*-open in X. Hence gof is slightly S_g^*-continuous.

(v) Let U be a clopen set in Z. Then $g^{-1}(U)$ is S_g^*-open in Y, since g is slightly S_g^*-continuous. Also since f is strongly S_g^*-continuous, $f^{-1}(g^{-1}(U))$ is open in X. Therefore gof is slightly continuous.

(vi) Let U be a S_g^*-open in Z. Since g is perfectly S_g^*-continuous, $g^{-1}(U)$ is open and closed in Y. Since f is slightly S_g^*-continuous, $f^{-1}(g^{-1}(U))$ is S_g^*-open in X. Hence gof is S_g^*-irresolute.

(vii) Let U be a closed and open set in Z. Since g is contra-continuous, $g^{-1}(U)$ is open and closed in Y. Since f is slightly S_g^*-continuous, $f^{-1}(g^{-1}(U))$ is S_g^*-open in X. Therefore $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is S_g^*-open in X. Hence gof is slightly S_g^*-continuous.

Theorem 2.7.14: If $f: (X, \tau) \to (Y, \sigma)$ is slightly S_g^*-continuous and A is an open subset of X then the restriction $f_{|A}: (A, \tau_A) \to (Y, \sigma)$ is slightly S_g^*-continuous.

Proof: Let V be a clopen subset of Y. Then $(f_{|A})^{-1}(V) = f^{-1}(V) \cap A$ Since $f^{-1}(V)$ is S_g^*-open and A is open, $(f_{|A})^{-1}(V)$ is S_g^*-open in the relative topology of A. Hence $f_{|A}$ is slightly S_g^*-continuous.
2.8 Totally \(S^*_g \)-continuous function

In this section, the concept of totally \(S^*_g \)-continuous functions are introduced and some of their basic properties are studied.

Definition 2.8.1: A map \(f: (X, \tau) \to (Y, \sigma) \) is said to be **totally \(S^*_g \)-continuous** if the inverse image of every open set in \((Y, \sigma)\) is \(S^*_g \)-clopen in \((X, \tau)\).

Example 2.8.2: Let \(X = Y = \{a, b, c\} \) with \(\tau = \{X, \emptyset, \{a\}, \{b, c\}\} = S^*_g O(X, \tau) \) and \(\sigma = \{Y, \emptyset, \{a\}\} \). Define \(f: (X, \tau) \to (Y, \sigma) \) by \(f(a) = a, \ f(b) = b, \ f(c) = c. \) Then \(f \) is totally \(S^*_g \)-continuous.

Theorem 2.8.3: Every perfectly \(S^*_g \)-continuous function is totally \(S^*_g \)-continuous.

Proof: Let \(f: (X, \tau) \to (Y, \sigma) \) be a perfectly \(S^*_g \)-continuous function. Let \(U \) be an open set in \((Y, \sigma)\). Then \(U \) is \(S^*_g \)-open in \((Y, \sigma)\). Since \(f \) is perfectly \(S^*_g \)-continuous, \(f^{-1}(U) \) is both open and closed in \((X, \tau)\) which implies \(f^{-1}(U) \) is both open and closed in \((X, \tau)\) which implies \(f^{-1}(U) \) is both \(S^*_g \)-open and \(S^*_g \)-closed in \((X, \tau)\). Hence \(f \) is totally \(S^*_g \)-continuous.

Remark 2.8.4: The converse of the above theorem need not be true as can be seen from the following example.

Example 2.8.5: Let \(X = \{a, b, c\} \) with \(\tau = \{\emptyset, X, \{a\}, \{b, c\}\} = \tau^c \) and \(Y = \{d, e, f\} \) with \(\sigma = \{\emptyset, Y, \{d\}\} \). Define \(f: (X, \tau) \to (Y, \sigma) \) by \(f(a) = d, \ f(b) = f, \ f(c) = e. \) Then \(S^*_g O(X, \tau) = \tau \) and \(S^*_g O(Y, \sigma) = \emptyset, Y, \{d\}, \{d, e\}, \{d, f\} \). Here \(\{d, e\} \) and \(\{d, f\} \) are \(S^*_g \)-open in \(Y \), but \(f^{-1}\{d, e\} = \{a, c\} \) and \(f^{-1}\{d, f\} = \{a, b\} \) are not open as well as not closed in \(X \). So \(f \) is not perfectly \(S^*_g \)-continuous but totally \(S^*_g \)-continuous.
Theorem 2.8.6: Every totally S_g^*-continuous function is S_g^*-continuous

Proof: Suppose $f: (X, \tau) \to (Y, \sigma)$ is totally S_g^*-continuous and A is any open set in (Y, σ). Since f is totally S_g^*-continuous, $f^{-1}(A)$ is S_g^*-clopren in (X, τ). Hence f is a S_g^*-continuous function.

Remark 2.8.7: The converse of the above theorem need not be true as can be seen from the following example

Example 2.8.8: Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{a\}\}$ and $\sigma = \{\emptyset, Y, \{a\}\}$. Then $S_g^*O(X, \tau) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}\}$. The identity map $f: (X, \tau) \to (Y, \sigma)$ is S_g^*-continuous but not totally S_g^*-continuous since $f^{-1}\{a\} = \{a\}$ is S_g^*-open in (X, τ) but not S_g^*-closed in (X, τ).

Remark 2.8.9: The following two examples shows that totally S_g^*-continuous and strongly S_g^*-continuous are independent.

Example 2.8.10: Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{b, c\}\} = \tau^c$ and $Y = \{d, e, f\}$ with $\sigma = \{\emptyset, Y, \{d\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a) = d$, $f(b) = f$ and $f(c) = e$. Then $S_g^*O(X, \tau) = \tau$ and $S_g^*O(Y, \sigma) = \{\emptyset, Y, \{d\}, \{d, e\}, \{d, f\}\}$. Here $\{d, e\}$ and $\{d, f\}$ are S_g^*-open in Y, but $f^{-1}\{d, e\} = \{a, c\}$ and $f^{-1}\{d, f\} = \{a, b\}$ are not open in X. Hence f is not strongly S_g^*-continuous but totally S_g^*-continuous.

Example 2.8.11: Let $X = Y = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} = S_g^*O(X, \tau)$ and $\sigma = \{\emptyset, Y, \{a, b\}\} = S_g^*O(Y, \sigma)$. The identity map $f: (X, \tau) \to (Y, \sigma)$ is strongly S_g^*-continuous but not totally S_g^*-continuous. For, the subset $\{a, b\}$ of (Y, σ), $f^{-1}\{a, b\} = \{a, b\}$ is S_g^*-open in (X, τ) but not S_g^*-closed in (X, τ).

43
Theorem 2.8.12: Let \(f: (X, \tau) \to (Y, \sigma) \) and \(g: (Y, \sigma) \to (Z, \eta) \) be any two functions.

(i) If \(f \) is \(S^*_g \)-irresolute and \(g \) is totally \(S^*_g \)-continuous then \(g \circ f \) is totally \(S^*_g \)-continuous.

(ii) If \(f \) is totally \(S^*_g \)-continuous and \(g \) is continuous then \(g \circ f \) is totally \(S^*_g \)-continuous.

Proof:

(i) Let \(U \) be an open set in \(Z \). Since \(g \) is totally \(S^*_g \)-continuous, \(g^{-1}(U) \) is \(S^*_g \)-clopen in \(Y \). Since \(f \) is \(S^*_g \)-irresolute, \(f^{-1}(g^{-1}(U)) \) is \(S^*_g \)-open and \(S^*_g \)-closed in \(X \). Therefore \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is \(S^*_g \)-clopen in \(X \). Hence \(g \circ f \) is totally \(S^*_g \)-continuous.

(ii) Let \(U \) be an open set in \(Z \). Since \(g \) is continuous, \(g^{-1}(U) \) is open in \(Y \). Also since \(f \) is totally \(S^*_g \)-continuous, \(f^{-1}(g^{-1}(U)) \) is \(S^*_g \)-clopen in \(X \). Hence \(g \circ f \) is totally \(S^*_g \)-continuous.

Remark 2.8.13: The following diagram gives pictorial representation of the discussion in this chapter.