Chapter-6

S_g^*-Compact and S_g^*-Connectedness in Topological Spaces

6.1 Introduction

In 1974, Das[14] defined the concept of semi-connectedness in topology and investigated its properties. Compactness is one of the most important, useful and fundamental concepts in topology. In 1981, Dorsett[21] introduced and studied the concept of semi-compact spaces. Since then, Hanna and Dorsett[22], Ganster[26] and Mohammad S. Sarsak[49] investigated the properties of semi-compact spaces.

In this chapter, first we introduce a new cover called S_g^*-open cover. Using this open cover we define a new space called S_g^*-compact space. Also we study that every S_g^*-compact space is compact and every semi-compact space is S_g^*-compact. Additionally we introduce another space called S_g^*-connected space and establish its relationship between connected space. Further we connect S_g^*-connected with various functions and obtain some more results.

6.2 Preliminaries

Definition 6.2.1: A topological space (X, τ) is said to be compact[83](resp. semi-compact[21]) if every open(resp. semi-open) cover of (X, τ) has a finite subcover.

Definition 6.2.2: A topological space (X, τ) is said to be connected[83](resp. semi-connected[21]) if X cannot be expressed as the union of two non-empty open (resp. semi-open) sets in X.
6.3 S^*_g-Compactness

Under this section, a new space is introduced in topological spaces which is named as S^*_g-Compact space. Also its properties are studied.

Definition 6.3.1: A collection $\{A_i : i \in \Lambda\}$ of S^*_g-open sets in a topological space (X, τ) is called a S^*_g-open cover of a subset A in (X, τ) if $A \subseteq \bigcup_{i \in \Lambda} A_i$.

Definition 6.3.2: A topological space (X, τ) is called S^*_g-compact if every S^*_g-open cover of (X, τ) has a finite subcover.

Definition 6.3.3: A subset A of a topological space (X, τ) is called S^*_g-compact relative to X if for every collection $\{U_i : i \in \Lambda\}$ of a S^*_g-open subsets of X such that $A \subseteq \bigcup \{U_i : i \in \Lambda\}$, there exists a finite subset Λ_0 of Λ such that $A \subseteq \bigcup \{U_i : i \in \Lambda_0\}$.

Definition 6.3.4: A subset B of a topological space X is said to be S^*_g-compact if B is S^*_g-compact as a subspace of X.

Theorem 6.3.5:

(i) Every S^*_g-compact space is compact.

(ii) Every semi-compact space is S^*_g-compact.

Proof: (i) and (ii) Follows from the Definitions 6.2.1 and 6.3.2.

Theorem 6.3.6: Every S^*_g-closed subset of a S^*_g-compact space (X, τ) is S^*_g-compact relative to (X, τ).

Proof: Let A be a S^*_g-closed subset of a S^*_g-compact space (X, τ). Then A^c is S^*_g-open in (X, τ). Let $\{U_i : i \in \Lambda\}$ be a cover of A by S^*_g-open subsets of X such that $A \subseteq \bigcup \{U_i : i \in \Lambda\}$. So $A^c \cup \{U_i : i \in \Lambda\} = X$. Since (X, τ) is S^*_g-there exists a finite subset...
\(\Lambda_0 \) of \(\Lambda \) such that \(A \subset A^c \cup \{U_i : i \in \Lambda\} = X \). Then \(A \subset \cup \{U_i : i \in \Lambda\} \) and hence \(A \) is \(S^*_g \)-compact relative to \(X \).

Theorem 6.3.7: Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a surjective \(S^*_g \)-continuous map. If \((X, \tau) \) is \(S^*_g \)-compact, then \((Y, \sigma) \) is compact.

Proof: Let \(\{A_i : i \in \Lambda\} \) be an open cover of \(Y \). Since \(f \) is \(S^*_g \)-continuous, \(\{f^{-1}(A_i) : i \in \Lambda\} \) is a \(S^*_g \)-open cover of \(X \). Also, since \(X \) is \(S^*_g \)-compact, it has a finite subcover, say \(\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\} \). The surjectiveness of \(f \) implies \(\{A_1, A_2, \ldots, A_n\} \) is a finite subcover of \(Y \) and hence \(Y \) is compact.

Theorem 6.3.8: Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a \(S^*_g \)-irresolute surjective map. If \((X, \tau) \) is \(S^*_g \)-compact, then \((Y, \sigma) \) is \(S^*_g \)-compact.

Proof: Let \(\{A_i : i \in \Lambda\} \) be a \(S^*_g \)-open cover of \(Y \). Since \(f \) is \(S^*_g \)-irresolute, \(\{f^{-1}(A_i) : i \in \Lambda\} \) is a \(S^*_g \)-open cover of \(X \). Also, since \(X \) is \(S^*_g \)-compact, it has a finite subcover, say \(\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\} \). Now \(f \) is onto implies \(\{A_1, A_2, \ldots, A_n\} \) is a finite subcover of \(Y \) and hence \(Y \) is \(S^*_g \)-compact.

Theorem 6.3.9: If a map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(S^*_g \)-irresolute and a subset \(B \) of \((X, \tau) \) is \(S^*_g \)-compact relative to \(X \), then the image \(f(B) \) is \(S^*_g \)-compact relative to \(Y \).

Proof: Let \(\{A_i : i \in \Lambda\} \) be any collection of \(S^*_g \)-open subsets of \(Y \) such that \(f(B) \subset \cup \{A_i : i \in \Lambda\} \). Then \(B \subset \cup \{f^{-1}(A_i) : i \in \Lambda\} \) holds. Since by hypothesis \(B \) is \(S^*_g \)-compact relative to \(X \), there exists a finite subset \(\Lambda_0 \) of \(\Lambda \) such that \(B \subset \cup \{f^{-1}(A_i) : i \in \Lambda_0\} \). Therefore we have \(f(B) \subset \cup \{A_i : i \in \Lambda_0\} \) which shows that \(f(B) \) is \(S^*_g \)-compact relative to \(Y \).
Theorem 6.3.10: If a surjective map \(f: (X, \tau) \to (Y, \sigma) \) is strongly \(S^*_g \)-continuous and \((X, \tau)\) is a compact space, then \((Y, \sigma)\) is \(S^*_g \)-compact.

Proof: Let \(\{A_i : i \in \Lambda \} \) be a \(S^*_g \)-open cover of \(Y \). Since \(f \) is strongly \(S^*_g \)-continuous, \(\{f^{-1}(A_i) : i \in \Lambda \} \) is a open cover of \(X \). Thus the open cover has a finite subcover, say \(\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\} \) as \(X \) is compact. The surjectiveness of \(f \) implies \(\{A_1, A_2, \ldots, A_n\} \) is a finite subcover of \(Y \) and hence \(Y \) is \(S^*_g \)-compact.

Corollary 6.3.11: If a surjective map \(f: (X, \tau) \to (Y, \sigma) \) is perfectly \(S^*_g \)-continuous and \((X, \tau)\) is a compact space, then \((Y, \sigma)\) is \(S^*_g \)-compact.

Proof: Since every perfectly \(S^*_g \)-continuous function is strongly \(S^*_g \)-continuous, the result follows from Theorem 6.3.10.
6.4 S^*_g-Connectedness

In this section, another space named as S^*_g-connected space is introduced and certain characterizations are proved.

Definition 6.4.1: A topological space (X, τ) is called a S^*_g-connected space if X cannot be written as a disjoint union of two nonempty S^*_g-open sets.

Example 6.4.2: Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}\}$. Then $S^*_gO(X, \tau) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and it is S^*_g-connected.

Theorem 6.4.3: Every S^*_g-connected space is connected.

Proof: Let (X, τ) be a S^*_g-connected space. Suppose that (X, τ) is not connected, then $X = A \cup B$ where A and B are disjoint nonempty open sets in (X, τ). Since every open set is a S^*_g-open set, (X, τ) is not a S^*_g-connected space and so (X, τ) is connected.

Remark 6.4.4: The converse of Theorem 6.4.3 is not true as can be seen from the following example.

Example 6.4.5: Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Clearly (X, τ) is connected. The S^*_g-open sets of X are $\{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Here (X, τ) is not S^*_g-connected because $X = \{a\} \cup \{b, c, d\}$ where $\{a\}$ and $\{b, c, d\}$ are non-empty S^*_g-open sets.

Theorem 6.4.6: A contra S^*_g-continuous image of a S^*_g-connected space is connected.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a contra S^*_g-continuous map of a S^*_g-connected space (X, τ) onto a topological space (Y, σ). Suppose (Y, σ) is not connected. Let A and B form a disconnection of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \emptyset$. Since f is contra S^*_g-continuous, $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. Thus
\(X\) is the union of disjoint nonempty \(S^*_g\)-open sets in \((X, \tau)\). Also \(f^{-1}(A) \cap f^{-1}(B) = \emptyset\).

Hence \(X\) is not \(S^*_g\)-connected which is a contradiction. Therefore \(Y\) is connected.

Theorem 6.4.7: For a subset \(A\) of a topological space \((X, \tau)\), the following are equivalent.

(i) \((X, \tau)\) is \(S^*_g\)-connected.

(ii) The only subsets of \((X, \tau)\) which are both \(S^*_g\)-open and \(S^*_g\)-closed are the empty set \(\emptyset\) and \(X\).

(iii) Each \(S^*_g\)-continuous map of \((X, \tau)\) into a discrete space \((Y, \sigma)\) with at least two points is a constant map.

Proof: (i) \(\Rightarrow\)(ii): Suppose that \(S \subset X\) is a proper subset, which is both \(S^*_g\)-open and \(S^*_g\)-closed. Then \(S^c\) is also \(S^*_g\)-open and \(S^*_g\)-closed. Therefore \(X = S \cup S^c\) is a disjoint union of two nonempty \(S^*_g\)-open sets which contradicts the fact that \(X\) is \(S^*_g\)-connected. Hence \(S = \emptyset\) or \(S = X\).

(ii) \(\Rightarrow\)(i): Suppose that \(X = A \cup B\) where \(A\) and \(B\) are disjoint nonempty \(S^*_g\)-open sets in \((X, \tau)\). Since \(A = B^c\), \(A\) is \(S^*_g\)-closed. But by assumption \(A = \emptyset\), which is a contradiction. Hence (i) holds.

(ii) \(\Rightarrow\)(iii): Let \(f: (X, \tau) \to (Y, \sigma)\) be a \(S^*_g\)-continuous map where \((Y, \sigma)\) is a discrete space with at least two points. Then \(f^{-1}(\{y\})\) is \(S^*_g\)-closed and \(S^*_g\)-open for each \(y \in Y\) and \(X = \cup \{f^{-1}(\{y\}) : y \in Y\}\). By assumption, \(f^{-1}(\{y\}) = \emptyset\) or \(f^{-1}(\{y\}) = X\).

If \(f^{-1}(\{y\}) = \emptyset\) for all \(y \in Y\), then \(f\) will not be a map. Hence, there exists only one point say \(y_1 \in Y\) such that \(f^{-1}(\{y\}) \neq \emptyset\) and \(f^{-1}(\{y_1\}) = X\) which shows that \(f\) is a constant map.
(iii) \Rightarrow (ii): Let U be both S_g^*-open and S_g^*-closed in (X, τ). Suppose that $U \neq \emptyset$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(U) = \{y_1\}$ and $f(U^c) = \{y_2\}$ for some distinct points y_1 and y_2 in (Y, σ), then f is S_g^*-continuous. By assumption, f is a constant map. Therefore $y_1 = y_2$ and so $U = X$.

Theorem 6.4.8: Let (X, τ) be S_g^*-connected. Then each contra S_g^*-continuous map of (X, τ) into a discrete space (Y, σ) with at least two points is a constant map.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a contra S_g^*-continuous map where (Y, σ) is a discrete space with at least two points. Then X is covered by S_g^*-open and S_g^*-closed covering $\{f^{-1}(\{y\}): y \in Y\}$. Since (X, τ) is S_g^*-connected, the only subsets of (X, τ) which are both S_g^*-open and S_g^*-closed are the empty set \emptyset and X. Therefore $f^{-1}(\{y\}) = \emptyset$ or $f^{-1}(\{y\}) = X$. If $f^{-1}(\{y\}) = \emptyset$ for all $y \in Y$, then f fails to be a map. Then, there exists only one point say $y \in Y$ such that $f^{-1}(\{y\}) \neq \emptyset$ and $f^{-1}(\{y\}) = X$ which shows that f is a constant map.

Theorem 6.4.9: If $f: (X, \tau) \to (Y, \sigma)$ is a S_g^*-continuous surjection and (X, τ) is S_g^*-connected, then (Y, σ) is connected.

Proof: Suppose (Y, σ) is not connected. Then $Y = A \cup B$ where A and B are disjoint nonempty open subsets of (Y, σ). Since f is S_g^*-continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint nonempty S_g^*-open sets in (X, τ). This contradicts the fact that (X, τ) is S_g^*-connected and hence (Y, σ) is connected.

Theorem 6.4.10: If a surjective map $f: (X, \tau) \to (Y, \sigma)$ is S_g^*-irresolute and (X, τ) is S_g^*-connected, then (Y, σ) is S_g^*-connected.

Proof: If possible assume that Y is not S_g^*-connected. Then $Y = A \cup B$ where A and B are nonempty disjoint S_g^*-open sets of (Y, σ). Since f is S_g^*-irresolute, $f^{-1}(A)$ and $f^{-1}(B)$
are S^*_g-open sets in (X, τ). Since f is onto, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty.

Now $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. Thus X is the union of disjoint nonempty S^*_g-open sets in (X, τ). This contradicts the fact that (X, τ) is S^*_g-connected and hence (Y, σ) is S^*_g-connected.

Theorem 6.4.11: If a surjective map $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly S^*_g-continuous and (X, τ) is a connected space, then (Y, σ) is S^*_g-connected.

Proof: Similar to the proof of the theorem 6.4.10.

Theorem 6.4.12: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a perfectly S^*_g-continuous map, (X, τ) a connected space, then (Y, σ) has an indiscrete topology.

Proof: Suppose that there exists a proper open set U of (Y, σ), then U is S^*_g-open in (Y, σ). Since f is perfectly S^*_g-continuous, $f^{-1}(U)$ is a proper open and closed subset of (X, τ). This implies (X, τ) is not connected which is a contradiction. Therefore (Y, σ) has an indiscrete topology.

Theorem 6.4.13: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a totally S^*_g-continuous map, from a S^*_g-connected space (X, τ) onto any space (Y, σ), then (Y, σ) is an indiscrete space.

Proof: Suppose (Y, σ) is not indiscrete. Let A be a proper nonempty open subset of (Y, σ). Then $f^{-1}(A)$ is a proper nonempty S^*_g-open and S^*_g-closed subset of (X, τ), which is a contradiction to the fact that (X, τ) is S^*_g-connected. Then (Y, σ) must be indiscrete.

Theorem 6.4.14: If f is a contra S^*_g-continuous map from a S^*_g-connected space (X, τ) onto any space (Y, σ), then (Y, σ) is not a discrete space.

Proof: Suppose (Y, σ) is discrete. Let A be any proper nonempty open and closed subset of (Y, σ). Then $f^{-1}(A)$ is a proper nonempty S^*_g-open and S^*_g-closed subset of (X, τ),
which is a contradiction to the fact that \((X, \tau)\) is \(S_g^*\)-connected. Hence \((Y, \sigma)\) is not a discrete space.

Theorem 6.4.15: Suppose that \(X\) is a \(S_g^*-T_{1/2}\) space then \(X\) is connected if and only if it is \(S_g^*\)-connected.

Proof: Suppose that \(X\) is connected. Then \(X\) cannot be written as a union of two non-empty disjoint proper subsets of \(X\). Suppose \(X\) is not \(S_g^*\)-connected. Let \(A\) and \(B\) be any two \(S_g^*\)-open sets subsets of \(X\) such that \(X = A \cup B\), where \(A \cap B = \emptyset\). Since \(X\) is a \(S_g^*-T_{1/2}\) space, every \(S_g^*\)-open sets are open. Hence \(A\) and \(B\) are open sets which contradicts the fact that \(X\) is not connected. Then \(X\) is \(S_g^*\)-connected. The converse part follows from the theorem that every \(S_g^*\)-connected space is connected.

Theorem 6.4.16: If \(f: (X, \tau) \rightarrow (Y, \sigma)\) is slightly \(S_g^*\)-continuous surjective function and \(X\) is \(S_g^*\)-connected then \(Y\) is connected.

Proof: Suppose \(Y\) is not connected. Then there exists non-empty disjoint open set \(A\) and \(B\) such that \(Y = A \cup B\). Therefore \(A\) and \(B\) are clopen sets in \(Y\). Since \(f\) is slightly \(S_g^*\)-continuous and surjective, \(f^{-1}(A)\) and \(f^{-1}(B)\) are non-empty disjoint \(S_g^*\)-opensets in \(X\). Also \(f^{-1}(Y) = X = f^{-1}(B)\). This shows that \(X\) is not \(S_g^*\)-connected, a contradiction. Hence \(Y\) is connected.

Theorem 6.4.17: If \(f\) is slightly \(S_g^*\)-continuous function from a connected space \((X, \tau)\) onto a space \((Y, \sigma)\) then \(Y\) is not a discrete space.

Proof: Suppose that \(Y\) is a discrete space. Let \(A\) be a proper nonempty open subset of \(Y\). Then \(f^{-1}(A)\) is nonempty \(S_g^*\)-clopen subset of \(X\), which is a contradiction to the fact that \(X\) is \(S_g^*\)-connected. Hence \(Y\) is not a discrete space.
Theorem 6.4.18: A space X is S^*_g-connected if every slightly S^*_g-continuous from X into any T_0 space Y is constant.

Proof: Let every slightly S^*_g-continuous function from a space X into Y be constant. If X is not S^*_g-connected then there exists a proper nonempty S^*_g-clopen subset A of X. Let (Y, σ) be such that $Y=\{a, b\}$ and $\sigma=\{\emptyset, Y, \{a\}, \{b\}\}$ be a topology. Let $f:X \to Y$ be any function such that $f(A) = \{a\}$ and $f(X - A) = \{b\}$. Then f is a non-constant and slightly S^*_g-continuous function such that Y is T_0 which is a contradiction. Hence Y is S^*_g-connected.

Theorem 6.4.19: A space (X, τ) is S^*_g-connected if and only if every totally S^*_g-continuous function from a space (X, τ) into any T_0 space (Y, σ) is a constant map.

Proof: Suppose $f:(X, \tau) \to (Y, \sigma)$ is a totally S^*_g-continuous function where (Y, σ) is a T_0-space. Suppose that f is not a constant map, then we can select two points x and y such that $f(x) \neq f(y)$. Since (Y, σ) is a T_0-space and $f(x)$ and $f(y)$ are distinct points of Y, there exists an open set G in (Y, σ) containing $f(x)$ but not $f(y)$. Since f is a totally S^*_g-continuous function, $f^{-1}(G)$ is a S^*_g-clopen subset of (X, τ). Clearly $x \in f^{-1}(G)$ and $y \notin f^{-1}(G)$. Now $X = f^{-1}(G) \cup (f^{-1}(G))^C$ which is the union of non-empty S^*_g-open subsets of X. Thus X is not S^*_g-connected space, which contradicts the fact that X is S^*_g-connected. Hence f is a constant map.

Conversely, suppose (X, τ) is not a S^*_g-connected space there exists a proper non-empty S^*_g-clopen subset A of X. Let $Y = \{a, b\}$ and $\tau = \{Y, \emptyset, \{a\}, \{b\}\}$ be a topology for Y. Let $f:(X, \tau) \to (Y, \sigma)$ be a function such that $f(A) = \{a\}$ and $f(Y \setminus A) = \{b\}$. Then f is non-constant and totally S^*_g-continuous such that Y is T_0, which is a contradiction. Hence X must be S^*_g-connected.
Theorem 6.4.20: Let \(f: (X, \tau) \to (Y, \sigma) \) be a totally \(S^*_g \)-continuous function and \(Y \) is a \(T_1 \)-space. If \(A \) is a non-empty \(S^*_g \)-connected subset of \(X \). Then \(f(A) \) is singleton.

Proof: Suppose that \(f(A) \) is not a singleton. Let \(f(x_1) = y_1 \in A \) and \(f(x_2) = y_2 \in A \).

Since \(y_1, y_2 \in Y \) and \(Y \) is a \(T_1 \)-space, there exists an open set \(G \) in \((Y, \sigma) \) containing \(y \), but not \(y_2 \). Since \(f \) is totally \(S^*_g \)-continuous, \(f^{-1}(G) \) is \(S^*_g \)-continuous, \(f^{-1}(G) \) is \(S^*_g \)-clopen set containing \(x_1 \) but not \(x_2 \). Now \(X = f^{-1}(G) \cup (f^{-1}(G))^c \). Thus we have expressed \(X \) as a union of two non-empty \(S^*_g \)-open sets. This contradicts the fact that \(X \) is \(S^*_g \)-connected. Therefore \(f(A) \) is singleton.

Theorem 6.4.21: Every semi-connected space is \(S^*_g \)-connected.

Proof: Let \((X, \tau) \) be a semi-connected space. Suppose that \((X, \tau) \) is not \(S^*_g \)-connected, then \(X = A \cup B \) where \(A \) and \(B \) are disjoint nonempty \(S^*_g \)-open sets in \((X, \tau) \). Since every \(S^*_g \)-open set is semi-open, \((X, \tau) \) is not a semi-connected space which is a contradiction and hence \((X, \tau) \) is \(S^*_g \)-connected.

Remark 6.4.22: The converse of the theorem 6.4.21 is not true as can be seen from the following example.

Example 6.4.23: Let \(X = \{a, b, c, d\} \) and \(\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\} \). Then \(SO(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\} \) and \(S^*_g O(X, \tau) = \tau \) Here \((X, \tau) \) is \(S^*_g \)-connected but not semi-connected because \(X = \{a\} \cup \{b, c, d\} \) where \(\{a\} \) and \(\{b, c, d\} \) are non-empty disjoint semi-open sets.
Theorem 6.4.24: If $f: (X, \tau) \to (Y, \sigma)$ is almost S^*_θ-continuous surjection and (X, τ) is S^*_θ-connected, then (Y, σ) is almost connected.

Proof: Suppose (Y, σ) is not almost connected. Then $Y = A \cup B$ where A and B are disjoint nonempty regular open sets of (Y, σ). Since f is almost S^*_θ-continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint nonempty S^*_θ-open sets in (X, τ). This contradicts the fact that (X, τ) is S^*_θ-connected and hence (Y, σ) is almost connected.

Theorem 6.4.25: If $f: (X, \tau) \to (Y, \sigma)$ is completely S^*_θ-irresolute surjective function and (X, τ) is almost connected then (Y, σ) is S^*_θ-connected.

Proof: Suppose (Y, σ) is not S^*_θ-connected. Then there exists non-empty disjoint S^*_θ-open sets A and B such that $Y = A \cup B$. Since f is completely S^*_θ-irresolute and surjective, $f^{-1}(A)$ and $f^{-1}(B)$ are regular open sets in X. Moreover $f^{-1}(A) \cup f^{-1}(B) = X$, $f^{-1}(A) \neq \emptyset$ and $f^{-1}(B) \neq \emptyset$. This shows that X is not almost connected which is a contradiction to the assumption. Hence (Y, σ) is S^*_θ-connected.