CONTENTS

ABSTRACT

LIST OF PUBLICATIONS

ABBREVIATIONS

NOMENCLATURE

LIST OF FIGURES

LIST OF TABLES

<table>
<thead>
<tr>
<th>Chapter – 1 INTRODUCTION</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Medical Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Introduction to Cancer</td>
<td>2</td>
</tr>
<tr>
<td>1.3 MRI Imaging Techniques</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1 Conventional MRI</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2 Perfusion MRI</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3 Positron Emission Tomography</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Surgery on Brain Tumors</td>
<td>4</td>
</tr>
<tr>
<td>1.4.1 Neuro Imaging Background</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Functional Magnetic Resonance Imaging (fMRI) Description</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1 The way a Source is detected in fMRI</td>
<td>7</td>
</tr>
<tr>
<td>1.5.2 The Bold Mechanism</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Statement of Problem</td>
<td>8</td>
</tr>
<tr>
<td>1.7 Objectives of the Study</td>
<td>9</td>
</tr>
<tr>
<td>1.8 Scope of the Study</td>
<td>9</td>
</tr>
<tr>
<td>1.9 Organisation of the Study</td>
<td>10</td>
</tr>
<tr>
<td>1.10 References</td>
<td>10</td>
</tr>
</tbody>
</table>
Chapter – 2 LITERATURE REVIEW ON FMRI

2.0 Introduction

2.1 Safety Considerations in fMRI
 2.1.1 Static Magnetic Fields
 2.1.2 Time Varying Magnetic Fields
 2.1.3 Other Safety Considerations

2.2 Comparison of the Functional Brain Imaging Modalities

2.3 Literature Review on Brain Tumors
 2.3.1 Limitations
 2.3.2 Brain cancer Characteristics

2.4 Blind Source Separation Review
 2.4.1 Introduction
 2.4.2 Blind Source Separation (BSS)
 2.4.3 Binaural Casa Systems
 2.4.4 Image Based BSS

2.5 Conclusions

2.6 References

Chapter – 3 BLIND SOURCE SEPARATION (BSS)

3.1 Introduction
 3.1.1 Vector Gradient s
 3.1.2 Matrix Gradient

3.2 Learning Rules for Optimization
 3.2.1 Gradient Descent
 3.2.2 Natural Gradient

3.3 BSS

3.4 Independent Component Analysis (ICA)
 3.4.1 Statistical Independence
 3.4.2 Nongaussian Distribution

3.5 Measures of Nongaussianity
 3.5.1 Kurtosis
3.5.2 Negentropy 44
3.6 Maximum Likelihood Method (ML) 46
 3.6.1 PDF of a Transformed Variable 48
 3.6.2 ML of ICA Model 48
3.7 Frequency Domain Convolutional BSS/ICA 51
 3.7.1 STFT and ISTFT Stage 52
 3.7.2 ICA Stage 54
 3.7.3 Permutation 57
 3.7.4 ICA Based Clustering 58
 3.7.5 Scaling 59
3.8 Conclusions 59
3.9 References 60

Chapter – 4 INTRODUCTION TO fMRI

4.1 The Big Magnet 63
 4.1.1 Experiment Stages 64
4.2 Physiology of the Bold Response 69
 4.2.1 Contrast Generation in Magnetic Resonance Imaging 69
 4.2.2 What Generates Magnetic Field Susceptibility? 70
 4.2.3 What are some common uses of the Procedure? 72
4.3 Blind Source Separation Characteristics 73
 4.3.1 Entropy 73
 4.3.2 Mutual Information 74
 4.3.3 Kullback – Leibler Divergence 75
4.4 Gradient Technique 76
 4.4.1 Gradient Descent Method 76
 4.4.2 Maximum Entropy Method 76
4.5 BSS by Mutual Information 80
4.6 Determination of the Differential Entropy h(y) 80
 4.6.1 Determination of the Marginal Entropy h(Y_i) 81
4.7 Results 84
4.8 Sparse Decomposition and BSS Problem 86
Chapter – 5 fMRI IMAGE ANALYSIS WITH BSS

5.1 Introduction

5.2 Introduction to fMRI

5.2.1 What is fMRI

5.2.2 Future role in understanding the Physiological basis for Cognitive and Perceptual Events

5.1.3 Summary and Future Directions

5.3 BSS Problem for fMRI Dataset

5.4 BSS Solution

5.4.1 The Geometrical Separation Method

5.4.2 Separation Process

5.5 Sparse Representations of Images

5.5.1 Separation Process

5.6 Separation by using the ICA_Newton Algorithm

5.6.1 PCA Algorithm (Principal Component Analysis)

5.6.2 The Analysis of the “ICA_Newton” Algorithm Input Parameters

5.7 Analysis of the fMRI Images

5.7.1 The Sparseness Method of “Wavelet Packet” (WP)

5.7.2 A Comparison between the Gradient operation and the WP operation in order to spares an image

5.7.3 Sparseness Identification Criteria

5.7.4 Simulation of fMRI Data steps

5.8 The Simulation Conduction

5.8.1 The Separation outcome and analysis

5.8.2 Artificial Source Planting

5.9 Conclusions
Chapter – 6 NN BASED BRAIN CANCER DETECTION

6.1 General Description
6.2 Types of Brain Cancers
6.3 Brain Cancer Characteristics
6.4 Brain Cancer Facts
6.5 An approach to Brain Cancer Classification
6.6 The Brain Cancer Database
6.7 Brain Cancer Recognition System
6.8 Early Tumor Detection System
 6.8.1 Image Preprocessing
 6.8.2 Image Segmentation
 6.8.3 Histogram Equalization
 6.8.4 Image Thresholding
 6.8.5 Image Enhancement
 6.8.6 Sharpening Filter
 6.8.7 Dilation
 6.8.8 Feature Extraction
 6.8.9 Texture Features
 6.8.10 Feature Selection
6.9 Implementation
6.10 Conclusions
6.11 References

Chapter – 7 - RESULTS

7.1 Refinement and extension languages with Milling
7.2 Finding the Limits of a Tumor with ASF
7.3 Simon Tumors on T1 and T2
7.4 Description of the stages of the algorithm
 7.4.1 Brain Tumor Detection Method
7.5 Stages of running the Algorithm based in the proposed Set-Up

APPENDIX A – GUI of the Model proposed in the Thesis

APPENDIX B – Representation of Tumor Image using IP Techniques

Chapter – 8 Conclusions and Future Scope
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Figure 1.1: MRI of the Brain</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Figure 1.2: MRI of Brain showing Tumor</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Figure 2.1: Pulse sequence diagram for Echo Volumar Imaging</td>
<td>14</td>
</tr>
<tr>
<td>4.</td>
<td>Figure 2.1a: Pulse sequence diagram and k-space sampling diagram for spiral imaging</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>Fig.3.1: Mixture of two image sources</td>
<td>29</td>
</tr>
<tr>
<td>6.</td>
<td>Fig.3.2: The schematic diagram of BSS for Convolutive Mixtures</td>
<td>30</td>
</tr>
<tr>
<td>7.</td>
<td>Fig.3.3: Plot of Probability Density Function of some Gaussian distributions, μ is the mean and σ^2 is the variance.</td>
<td>34</td>
</tr>
<tr>
<td>8.</td>
<td>Fig.3.4: Different well known distribution together with their kurtosis measure, D= Laplace Distribution, S=hyperbolic Secant Distribution, L= logistic Distribution, N= Normal Distribution, C= Raised Cosine Distribution, W=Wigner Semicircle Distribution, and U= Uniform Distribution.</td>
<td>35</td>
</tr>
<tr>
<td>9.</td>
<td>Fig.3.5: Block diagram of Frequency domain BSS/ICA</td>
<td>44</td>
</tr>
<tr>
<td>10.</td>
<td>Fig.3.6: The Power Spectral Density of the sinusoidal image before STFT</td>
<td>46</td>
</tr>
<tr>
<td>11.</td>
<td>Fig.3.7: The Power Spectral Density of the sinusoidal image after ISTFT</td>
<td>46</td>
</tr>
<tr>
<td>12.</td>
<td>Fig.3.8: The plot of the condition of a performance matrix.</td>
<td>47</td>
</tr>
<tr>
<td>13.</td>
<td>Fig.3.9: The plot of hyperbolic tangent of complex number</td>
<td>48</td>
</tr>
<tr>
<td>14.</td>
<td>Fig.3.10: The plot of hyperbolic tangent of parts of complex number</td>
<td>49</td>
</tr>
<tr>
<td>15.</td>
<td>Fig.3.11: The plot of the source and estimated source using $f(z) = \tanh(z + i\bar{z})$ as ICA cost function.</td>
<td>50</td>
</tr>
<tr>
<td>16.</td>
<td>Fig.3.12: The plot of the source and estimated source using $f(z) = \tanh(\text{Re}{z}) + \tanh(\text{Im}{z})i$ as ICA cost function.</td>
<td>50</td>
</tr>
<tr>
<td>17.</td>
<td>Fig 4.1: a. Set up of fMRI, b. Subject in scanning</td>
<td>60</td>
</tr>
<tr>
<td>18.</td>
<td>Fig 4.2: During the experiment green and white boxes switch color every 1 sec.</td>
<td>60</td>
</tr>
<tr>
<td>19.</td>
<td>Fig 4.3: 4 Dimensional data: 4 spatial, 1 temporal</td>
<td>61</td>
</tr>
<tr>
<td>20.</td>
<td>Fig 4.4: Sagittals – high resolution images along the midline used to plan the slices (Number of Slices e.g., 10)</td>
<td>62</td>
</tr>
<tr>
<td>21.</td>
<td>Fig 4.5: Anatomical – high resolution images (e.g. 1x1x2.5mm).</td>
<td>62</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Fig 4.6: Dimensional Data: 4 spatial, 1 temporal</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Fig 4.7: Reconstruction of images into "real space"</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Fig 4.8: Statistical Map superimposed on anatomical MRI image</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Fig 4.9: Rendered 4D fMRI image</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Fig 4.10: fMRI BOLD Techniques states comparison</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Fig 4.11: fMRI image mixing process</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Fig 4.12: Signal Mixing Process</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Fig 4.13: Signal De-Mixing Process</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Fig 4.14: Signal Restoration Process</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Fig 4.15: Linear Mixing coefficients w.r.t. time</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Fig 4.16: X is a first component (kind of background), Y, Z, W movements The movie mixtures that are analyzed</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Fig 4.17: The separated images answer all the expectations: One background source and seven movements as Mixtures</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Fig 4.18: The separated images answer all the expectations: One background source and seven movements</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>Fig 4.19: SLICE 6 Mixtures representation</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>Fig 4.20: Slice 8 Representation</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>Fig 4.21: Slice 6 and Slice 8 Mixtures representation</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>Fig 4.22: Slice 6 and Slice 8 Decomposition with the given mixtures.</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>Fig 5.1: Histogram Representation of BSS Mixtures</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>Fig 5.2: Statistical representation of Mixtures as Histogram</td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>Fig 5.3: 1st source</td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>Fig 5.4: 2nd source</td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>Fig 5.5: Wavelet decomposition using Sparse representation of Image</td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>Fig 5.5a: Wavelet Tree Hierarchy</td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>Fig 5.6: Mixtures of Two images</td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td>Fig 5.7: Clustered Representation of the mixture</td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>Fig 5.8: Histogram of the given images from the Filtered output</td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>Fig 5.9: Separated Images after performing BSS</td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>Fig 5.10: Resultant figures after performing ICA_Newton Method using BSS</td>
<td></td>
</tr>
</tbody>
</table>
50. Fig 5.11: Shaping of six mixtures from four sources

51. Fig 5.12: Using the PCA_Algorithm, result of Fast ICA_Newton Algorithm on the mixtures and examined for separations

52. Fig 5.13: Display of the error graph pending on the iterations number for the two separated images

53. Fig 5.14: Display of the error graph pending on the smoothing parameter "lam" for the two separated images

54. Fig 5.15: One dimension "Wavelet Packet" operation

55. Fig 5.16: wavelet tree representation with L – LPF, H – HPF

56. Fig 5.17: The sources from the 16 separated images (1 - 16)

57. Fig 5.18: The separation algorithm outcome of the 2nd experiment (between the range of 1 to 32 images)

58. Fig 5.19: The sources from the 16 separated images (17-32)

59. Fig 5.20: The separation algorithm outcome of the 3rd experiment (between the range of 17 to 48 images)

60. Fig 5.21: The sources from the 16 separated images (33-48)

61. Fig 5.22: The separation algorithm outcome of the 4th experiment (between the range of 33 to 64 images)

62. Fig 5.23: The sources from the 16 separated images (49-64)

63. Fig 5.24: The separation algorithm outcome of the 5th experiment (between the range of 49 to 80 images)

64. Fig 5.25: The sources from the 16 separated images (65-80)

65. Fig 5.26: The separation algorithm outcome of the 6th experiment (between the range of 65 to 96 images)

66. Fig 5.27: The sources from the 16 separated images (81-96)

67. Fig 5.28: The separation algorithm outcome of the 7th experiment (between the range of 81 to 112 images)

68. Fig 5.29: The sources from the 16 separated images (97-112)

69. Fig 5.30: The separation algorithm outcome of the 8th experiment (between the range of 97 to 128 images)

70. Fig 5.31: The sources from the 16 separated images (113-128)
71. Fig 5.32: The Active Sources during the Simulation pending on Time

72. Fig 5.33: Artificial Source Implantation

73. Fig 5.34: A comparison between the new results and the original results (without the planted artificial source)

74. Fig 5.34a: A comparison between the new results and the original results (without the planted artificial source)

75. Fig. 6.1: Cut section of brain showing tumor

76. Fig. 6.2: Anatomy of the Brain

77. Fig. 6.3 a, b: Representation of Lesions

78. Fig. 6.4 a, b: Contrast Enhancement

79. Fig. 6.5 a, b, c: T1 and T6 Representation

80. Fig. 6.6 a, b, c: Edematous Brain Parenchyma Infiltrated by Isolated Tumor Cells

81. Fig. 6.7 a, b, c: Infiltrated Parenchyma

82. Fig 6.8 : Block Diagram of the Implemented Design

83. Fig 7.1: fMRI Image (T1) with the GLIOMA tumor

84. Fig 7.2: Axial images (T1) of a patient with brain cancer metastasis tumor (first and second row). The tumor appears dark in the diffusions maps, suggesting viable tissue. The tumor appears in dark white (as grayscale image) and three instances of Row 1 and Row 2 define the existence of tumor (from Chapter5)

85. Fig 7.3: Axial images (T2) of a patient with brain cancer metastasis tumor (first and second row). The tumor appears dark in the diffusions maps, suggesting viable tissue. The tumor appears in dark white (as grayscale image) and three instances of Row 1 and Row 2 define the existence of tumor (from Chapter5)

86. Fig 7.4: M1 and M2 fMRI images denote the existence of Tumor after analyzing with Wavelet packet method (every image is treated as Sparse Image)

87. Fig 7.5: M3 and M4 fMRI images denote the existence of Tumor after analyzing with Wavelet packet method (every image is treated as Sparse Image)
88. Fig 7.6: The existence of Tumor is represented as a mask using the basic image processing techniques. The early tumor is named as Simon Tumor (With the instances of T1 Image12 and T2 Image12) 157

89. Fig 7.7: The existence of Tumor is represented as a mask using the basic image processing techniques. The early tumor is named as Simon Tumor (With the instances of T1 Image13 and T2 Image13) 157

90. Fig 7.8: The existence of Tumor is represented as a mask using the basic image processing techniques. The early tumor is named as Simon Tumor (With the instances of T1 Image14 and T2 Image14) on the Top View or the Skeletal Side 158

91. Fig 7.9: The existence of Tumor is represented as a mask using the basic image processing techniques. The early tumor is named as Simon Tumor (With the instances of T1 Image12 and T2 Image12) – on the side view or the Coronal Side 158

92. Fig 7.10: The existence of Tumor is represented as a mask using the basic image processing techniques. The early tumor is named as Simon Tumor (With the instances of T1 Image15 and T2 Image15) 159

93. Fig 7.11: The existence of Tumor is represented as a mask using the basic image processing techniques. The early tumor is named as Simon Tumor (With the instances of T1 Image11 and T2 Image11) 159

94. Fig 7.12: a. Representation of Tumor b. Mask of the tumor from analyzed fMRI image c. ROI of the Tumor 160

95. Fig 7.13: The different stages of finding the Tumor in any of the analyzed image 161

96. Fig 7.14: The different stages of finding the Input parameters to the artificial neural network model for detecting the tumor (on X – Number of Dilations and on Y – Euler Number) which points the concerned fMRI image with tumor for Image 11 162

97. Fig 7.15: The different stages of finding the Input parameters to the artificial neural network model for detecting the tumor (on X – Number of Dilations and on Y – Euler Number) which points the concerned fMRI image with tumor for Image 12 163

98. Fig 7.16: The different stages of finding the Input parameters to the artificial neural network model for detecting the tumor (on X – Number of Dilations and on Y – Euler Number) which points the concerned fMRI image with tumor for Image 13 163
99. Fig 7.17: The different stages of finding the Input parameters to the artificial neural network model for detecting the tumor (on X – Number of Dilations and on Y – Euler Number) which points the concerned fMRI image with tumor for Image 14

100. Fig 7.18: The Input parameters to the artificial neural network model for detecting the tumor which points the concerned fMRI image with tumor for Image 11 with the histogram in Diamond Shape

101. Fig 7.19: The Input parameters to the artificial neural network model for detecting the tumor which points the concerned fMRI image with tumor for Image 11 with the histogram in Diamond Shape in 3D

102. Fig 7.20: The image on the top denotes the Tumor image on which the analysis is done. The image in the bottom denotes the existence of tumor after multiple iterations.

103. Fig 7.21: The image on the top denotes the Tumor of T2 image on which the analysis is done.

104. Fig 7.22: The image on the top denotes the Tumor of T2 image on which the analysis is done.

105. Fig 7.23: The image on the top denotes the Tumor of T2 image on which the analysis is done.

106. Fig 7.24: The image on the top denotes the Tumor of T1 image on which the analysis is done.

107. Fig 7.25: 3D Rendered T2 tumor

108. Fig 7.26: 3D Rendered T1 Tumor

109. Fig 7.27: Original T2 Tumor (3D)

110. Fig 7.28: Tumor representation on 3D at multiple instances.

111. Fig A1: The basic steps implemented for the analysis of fMRI Images as proposed in Chapter 5 and Chapter 6

112. Fig A2: The above represents the GUI built in MATLAB. The T1 and T2 Images are taken as Inputs and are processed using the basic IP* techniques.

113. Fig A3: Display of Tumor from the processed fMRI images and the Tumor is marked with RED Colored boundaries

114. Fig A4: Display of Tumor on the left side of the fMRI image

115. Fig B1: Sliced fMRI image after Processing. The red spot in the layers of the image
represents tumor.

116. Fig B2: 2D View of the fMRI Image. The spot in the image represents tumor.

117. Fig B3: Rendered View of the fMRI Image. The spot in the image represents tumor.

118. Fig B4: Substance Number denotes the number of fMRI images processed for the tumor detection and different objects define the tumor measurement at different levels.

119. Fig B4: 3D View of the processed fMRI Images with tumor.
LIST OF TABLES

1. Table 2.1 – Comparison of modalities for studying Brain Functions 17

2. Table 3.1 – SIR of the Mixtures in dB 55