INTRODUCTION

1. REVIEW OF LITERATURE

1.1. Classification, Characteristics and Occurrence of *Pseudomonas aeruginosa*
1.2. Diseases caused by *Pseudomonas aeruginosa*
1.3. Treatment of Infections Caused by *Pseudomonas aeruginosa*
1.4. Classification, Characteristics and Occurrence of *Yersinia enterocolitica*
1.5. Diseases caused by *Yersinia enterocolitica*
1.6. Treatment of Infections Caused by *Yersinia enterocolitica*
1.7. Type Three Secretion System and its Origin
1.8. Components of Type Three Secretion System
1.9. Injectisome of Type Three Secretion System
1.10. Translocation Apparatus or Translocon of Type Three Secretion System
1.11. Chaperones of Type Three Secretion System
1.12. Effector Proteins of Type Three Secretion System from *Pseudomonas aeruginosa* and *Yersinia enterocolitica*
1.13. Type Three Secretion System in *Pseudomonas aeruginosa*
1.14. Characteristic Features of PerV- the V-antigen of *Pseudomonas aeruginosa* and its Regulator PcrG
1.15. Development of Vaccine against PerV
1.16. Type Three Secretion System of *Yersinia enterocolitica*
1.17. Ysc-Yop System of *Yersinia enterocolitica* and its Regulation
1.18. Ysa-Ysp TTSS of *Yersinia enterocolitica*
1.19. *syc-ysp* Operon of Ysa-Ysp TTSS of *Yersinia enterocolitica*
1.20. Regulation of Ysa-Ysp TTSS
2. GENERAL METHODOLOGY

2.1. Agarose Gel Electrophoresis for Analysis of DNA 27
2.2. Purification of DNA Fragments Using PCR Clean Up Kit 28
2.3. Purification of DNA Fragments From Agarose Gel by Gel Extraction Kit 29
2.4. Isolation of Plasmid DNA
 2.4.1. Small-scale preparation Plasmid DNA (using QIAGEN Spin Plasmid Isolation kit) 30
 2.4.2. Preparation of plasmid DNA on a large scale 31
2.5. Quantification of proteins 32
2.6. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS PAGE) 33
2.7. Transformation of DNA in E. coli Competent Cells 37

3. EXPRESSION, PURIFICATION, STRUCTURAL AND FUNCTIONAL ANALYSIS OF SYCB: A TYPE THREE SECRETION CHAPERONE FROM YERSINIA ENTEROCOLITICA

3.1. Background 38
3.2. Materials and Methods
 3.2.1. BLAST Analysis Multiple Sequence Alignment and Secondary Structure Prediction 39
 3.2.2. Homology Modelling of SycB Using I-TASSER Server and Generation of Solvent Accessible Surface 40
 3.2.3. WebLogo Server for Determination of Conserved and Canonical Residues Within the TPR Region 40
 3.2.4. Cloning and Purification of proteins
 3.2.4.1. Construction of Expression Vectors 41
 3.2.4.2. Expression and Purification of Proteins 42
 3.2.5. Native Mass Spectrometry 44
 3.2.6. Size Exclusion Chromatography 44
 3.2.7. In Vitro Crosslinking of SycB, ΔSycB(1–114) and YspC-SycB 45
 3.2.8. Dynamic Light Scattering 45
 3.2.9. Binding Assay of Refolded SycB with YspC 45
 3.2.10. Far UV and Near UV CD 45
 3.2.11. Tyrosine Fluorescence 46
 3.2.12. ANS Fluorescence 47
3.3. Results and Discussions

3.3.1. SycB- a Class II Chaperone of TTSS is Predicted to Have a Predominantly Helical Structure

3.3.2. SycB Has a Concave Core Formed By TPR Motifs and a Flexible N-Terminal Helix Predicted by Homology Modelling

3.3.3. Prediction of Probable Residues Involved in Protein–Protein Interaction from the Homology Model

3.3.4. Purification of SycB, ΔSycB(1–114), ΔSycB(36–114), YspC and YspC-SycB Complex

3.3.5. Native Mass Spectrometry

3.3.6. Binding Partners of SycB- YspB, YspC and YsaE Behave Differently

3.3.7. SycB Refolded From the Inclusion Bodies and Native SycB Behave in a Similar Fashion

3.3.8. Physiological Form of SycB and Its Interaction With Translocator YspC

3.3.9. Alteration in the Solution Conformations of SycB with Reduction in pH

3.3.10. SycB Exhibits Solvent Exposed Hydrophobic Patches at Physiological pH

3.3.11. Certain Tyrosine Residues of the TPR Region Exposed to the Solvent May Take Part in Protein–Protein Interaction

3.4. Discussion

4. YSPC: A UNIQUE TRANSLOCATOR EXHIBITS STRUCTURAL ALTERATION IN THE COMPLEX FORM WITH CHAPERONE SYCB

4.1. Background

4.2. Materials and Methods

4.2.1. ConSurf Server, Multiple Sequence Alignment and Secondary Structure Prediction

4.2.2. Expression and Purification of YspC, YspC-SycB, YspC-ΔSycB(1–114) and YspC- ΔSycB(36–114)

4.2.3. Size Exclusion Chromatography

4.2.4. Far UV and Near UV CD

4.2.5. Proteolytic Digestion

4.2.6. ANS Fluorescence

4.2.7. Tyrosine Fluorescence

4.3. Results

4.3.1. YspC Shows Significant Variation from Other Minor Translocators
4.3.2. The Secondary Structural Elements in YspC are Moulded Differently While Forming Complex with SycB
4.3.3. YspC Shows Tertiary Structure Signal Unique for a Translocator Protein
4.3.4. YspC Exhibits High Tm and Cooperative Melting Behaviour Which Changes in the Complex Form
4.3.5. Proteolytic Digestion Bears the Signature of Modified Structural Folds of YspC When in the Complex with SycB
4.3.6. YspC in Individual and in Complex Form with SycB Exhibits Solvent Exposed Hydrophobic Domains
4.3.7. Binding of YspC Masks the Tyrosine Residues in the Two Predicted TPR Regions of SycB
4.3.8. The Two TPR Regions of SycB Interacts with YspC Forming a Physiologically Altered Complex

4.4. Discussion

5. PCRG PROTECTS THE TWO LONG HELICAL OLIGOMERIZATION DOMAINS OF PCRV, BY AN INTERACTION MEDIATED BY THE INTRAMOLECULAR COILED-COIL REGION OF PCRG

5.1. Background
5.2. Materials and Methods
 5.2.1. Design of Expression Vectors
 5.2.2. Purification of Proteins
 5.2.3. Size Exclusion Chromatography
 5.2.4. Near UV CD Spectroscopy
 5.2.5. ANS Fluorescence Spectroscopy
 5.2.6. Dynamic Light Scattering
 5.2.7. Homology Modelling, Consurf And Weblogo Analysis, and Molecular Docking of ∆PcrG(13-72) And PerV
 5.2.8. Multiple sequence alignment, disorder and coiled-coil prediction
 5.2.9. Proteolytic Digestion of PerV, PcrG-PerV with α-Chymotrypsin and PerG with Elastase
 5.2.10. Native Mass Spectrometry
 5.2.11. MS/MS Sequence Analysis of Different Fragments of PerG, PerV and PerG-PerV
 5.2.12. Chemical Crosslinking
5.2.13. Surface Plasmon Resonance 118

5.3. Results 119

5.3.1. PcrV Retains the Elongated Conformation in the Complex form with PcrG, but with Structural Alteration 119

5.3.2. A Homology Model of PcrV Shows the Elongated Dumbbell Shaped Conformation 120

5.3.3. Proteolytic Digestion Identified a Specific Region of PcrV Protected by PcrG 122

5.3.4. PcrG Restores the Monomeric State of Oligomeric ΔpcrV (128-294) by Forming a High Affinity Heterodimeric PcrG-ΔpcrV (128-294) Complex 122

5.3.5. Helix-12 is the Key Mediator for PcrG-PcrV Interaction and Helix-7 Might Support the Interaction 124

5.3.6. Intramolecular Coiled-Coil Region of PcrG Contains the PcrV Interaction Site with an Indirect Role of N-Terminal Residues of PcrG in the Interaction 125

5.3.7. Finally a Model of ΔPcrG (13-72) and Docking Studies Put ΔPcrG (13-72) in a Groove in Between Two Globular Domain of PcrV 128

5.4. Discussion 129

CONCLUDING REMARKS 163
REFERENCES 168
PUBLICATIONS 190