TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Topic</th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Biological Roles of Lectins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Major Applications of Lectins in Biomedical Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Historical Perspective of Lectins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Lectins from Plant Sources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 Lectins from Animal Sources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6 Aims and Objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7 Hypothesis</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Review of literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Lectins Specific to Blood Group Determinants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.1 Anti-A specific lectins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.2 Anti-B specific lectins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.3 Anti A+B specific lectins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.4 Anti-H specific lectins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.5 Lectin specific to Lewis blood groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.6 Lectins specific to P blood groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.7 Lectins specific to I blood groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.8 Anti-M specific lectins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.9 Anti-N specific lectins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.10 Lectins identifying Rh blood groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.11 The Gy system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.12 The CI system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Lectins and Erythrocytic Polyagglutination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.1 The T-receptor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.2 The TK-polyagglutination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.3 The Tn-polyagglutination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.4 Cad and Super Sid type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.5 Acquired B polyagglutination</td>
<td></td>
</tr>
</tbody>
</table>
2.2.6 Hereditary erythroblastic multinuclearity with positive acidified serum (HEMPAS) test

2.2.7 VA-polyagglutination

2.3 Precipitating Property of Lectins

2.4 Inhibition Studies on Lectins

2.5 Interaction of Lectins with Malignant Cells

2.6 Mitogenic Stimulation of Lectins

2.7 Changes in Biological Activities of Lectins

2.8 Lectin Research in India

3. Material and Methods

3.1 Introduction to Diabetes Mellitus

3.1.1 Epidemiology of diabetes mellitus

3.1.2 Etymology and history of diabetes mellitus

3.1.3 Classification of diabetes mellitus

3.1.3.1 Type-1 diabetes mellitus

3.1.3.2 Type-2 diabetes mellitus

3.1.4 Pathophysiology of diabetes mellitus

3.1.4.1 Changes in the islets of langerhans cells of pancreas during diabetes mellitus

3.1.5 Insulin

3.1.5.1 Discovery and biosynthesis of insulin

3.1.5.2 Secretion of insulin

3.1.5.3 Receptor of insulin

3.1.5.4 Mechanism of action of insulin

3.1.5.5 Role of insulin in diabetes mellitus

3.1.5.6 Diagnosis of diabetes mellitus

3.1.5.7 Complication of diabetes mellitus

3.2 Introducing Amritsar and its People

3.3 Material

3.3.1 Patients and controls

3.3.2 Chemicals and reagents

3.3.3 Instrumentation
3.3.4 Human blood sample for hemagglutination

3.4 LH specificity in Type-2 Diabetes Mellitus

3.4.1 Collection of samples
3.4.2 Isolation of the anti-LH lectin from *Erythrina lithosperma*
3.4.3 Collection and processing of human blood
3.4.4 Collection and preservation of serum samples
3.4.5 ABO typing
3.4.6 Hemagglutination technique
3.4.7 Technique of the LH typing

3.5 Properties of the Anti-LH Lectin

3.5.1 Estimation of total proteins in the crude extracts of the anti-LH lectin
 3.5.1.1 Estimation of total proteins via Biuret method
 3.5.1.2 Estimation of total proteins via Bradford method
 3.5.1.3 Estimation of total proteins via Lowry method
 3.5.1.4 Estimation of total proteins via UV method

3.5.2 Estimation of total carbohydrates in the crude extracts of the anti-LH lectin

3.5.3 Molecular characterization of proteins
 3.5.3.1 Casting of separating gel
 3.5.3.2 Casting of stacking gel
 3.5.3.3 Preparation and loading of samples
 3.5.3.4 Loading and running the gel
 3.5.3.5 Staining and destaining the gels

3.5.4 Biochemical characterization
 3.5.4.1 Sugar inhibition test

3.5.5 Physical stability
 3.5.5.1 Effect of change in pH on hemagglutination reactivity of anti-LH lectin or pH stability
 3.5.5.2 Effect of metal ions
 3.5.5.3 Effect of temperature or thermal stability
3.6 Association of HbA1c with Lipid profiles in patients with type 2 diabetes mellitus

3.6.1 Study participants

3.6.2 Measurement of biochemical parameters

3.7 Statistical Analysis

3.7.1 ABO gene frequencies

3.7.2 LH-specificity

3.7.3 Chi-squared test

4. Results

4.1 The LH-specificity in Patients with Type-2 Diabetes Mellitus

4.2 Properties of the Anti-LH lectin

4.2.1 Hemagglutination assay of the anti-LH lectin

4.2.2 Estimation of total proteins in the crude extracts of the anti-LH lectin

4.2.3 Estimation of total carbohydrates the crude extracts of the anti-LH lectin

4.2.4 Estimation of molecular weight of the anti-LH lectin

4.2.5 Biochemical characterization of the anti-LH lectin

4.2.6 Physical stability

4.2.6.1 Effect of pH on the agglutinability of the anti-LH lectin

4.2.6.2 Effect of metal ions on the agglutinability of the anti-LH lectin

4.2.6.3 Effect of temperature on the activity of the anti-LH lectin

4.3 Association of HbA1c with Lipid Profiles in Patients with type-2 Diabetes Mellitus

5. Discussion

5.1 The LH-specificity in Patients with Type-2 Diabetes Mellitus

5.2 Properties of the Anti-LH lectin

5.2.1 Hemagglutination activity

5.2.2 Effect of pH on the hemagglutination activity of the anti-LH lectin

5.2.3 Effect of ions on the hemagglutination activity of the anti-LH lectin

5.2.4 Effect of temperature on the stability of the anti-LH lectin

5.2.5 Sugar inhibition assay of the anti-LH Lectin

5.2.6 Estimation of molecular weight of the anti-LH lectin
5.3 Association of HbA1c with Lipid Profiles in Patients with type-2 Diabetes Mellitus

5.4 Strength of the Study

5.5 Limitation of the Study

6. Summary and Conclusions

References

Appendices