We observe that the Γ-semigroup $T(A,B)$ is regular. In this chapter we study regular Γ-semigroups in general. In section one we give some examples of regular Γ-semigroups and prove a representation theorem. In section two we study some properties of regular Γ-semigroups. In the third section Γ-group congruences on a regular Γ-semigroup are discussed. In the last section the idea of idempotent separating congruence on a regular Γ-semigroup is introduced and we characterize the maximum idempotent separating congruence on a regular Γ-semigroup.

1. EXAMPLES AND A REPRESENTATION OF REGULAR Γ-SEMIGROUPS

A Γ-semigroup (S, Γ) is said to be regular if for every element $a \in S$ we have $a \in a \Gamma S \Gamma a$ where $a \Gamma S \Gamma a = \{a \alpha \beta a : b \in S \text{ and } \alpha, \beta \in \Gamma \}$. An element $b \in S$ is said to be an (α, β)-inverse of a if $a = a \alpha \beta a$ and $b = b \beta a \alpha b$ ($\alpha, \beta \in \Gamma$) and in this case we write $b \in \mathcal{V}_{\alpha}^\beta(a)$. Consideration of several examples serves to bring the above idea into focus.

EXAMPLE 1.1. Let S be the set of all 3×2 matrices over the
field of rational numbers and \(\Gamma \) be the set of all \(2 \times 3 \) matrices over the ring of integers. Let \(A, B \in S \) and \(D \in \Gamma \). Then with respect to usual matrix product \(ADB \in S \) and \((S, \Gamma) \) is a \(\Gamma \)-semigroup. We show that \((S, \Gamma) \) is a regular \(\Gamma \)-semigroup.

Let \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in S. \)

Case (1). Let \(ad - bc \neq 0 \). Then

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} d & -b \\ 2(ad-bc) & 2(ad-bc) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

Case (2). \(af - be \neq 0 \). Then

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} f & -b \\ 2(af-be) & 2(af-be) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

Case (3). \(cf - de \neq 0 \). Then

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} f & -d \\ 2(cf-de) & 2(cf-de) \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]
Case (4). When the submatrices are singular. Then

either \(ad-bc = 0 \) or \(ad-be = 0 \)

or \(cf-de = 0 \) or \(af-be = 0 \)

If all the elements of \(A \) are 0 then the case is trivial.

Next we consider at least one of the elements of \(A \) is non-zero say \(a \neq 0 \).

Then

\[
\begin{pmatrix}
 a & b \\
 c & d \\
 e & f
\end{pmatrix}
\begin{pmatrix}
 2 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 1/2a & 0 \\
 0 & 0 \\
 0 & 0
\end{pmatrix}
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix}

=
\begin{pmatrix}
 a & b \\
 c & d \\
 e & f
\end{pmatrix}
\begin{pmatrix}
 a & b \\
 c & d \\
 e & f
\end{pmatrix}
\]

Thus \(A \) is regular. Hence \((S, \Gamma)\) is a regular \(\Gamma \)-semigroup.

EXAMPLE 1.2. Let \(A = \{1, 2, 3\} \) and \(B = \{4, 5\} \) be two nonempty sets.

Let \(S = \{x, y, z\}, \Gamma = \{\alpha, \beta, \gamma, \delta, \theta, \phi\} \) where \(x, y, z \) are mappings from the set \(A \) to the set \(B \) and \(\alpha, \beta, \gamma, \delta, \theta, \phi \) are mappings from the set \(B \) to the set \(A \). They are defined by

\[
x = \begin{pmatrix}
 1 & 2 & 3 \\
 4 & 4 & 4
\end{pmatrix}, \quad y = \begin{pmatrix}
 1 & 2 & 3 \\
 5 & 5 & 5
\end{pmatrix}, \quad z = \begin{pmatrix}
 1 & 2 & 3 \\
 4 & 4 & 5
\end{pmatrix},
\]

\[
\alpha = \begin{pmatrix}
 4 & 5 \\
 1 & 1
\end{pmatrix}, \quad \beta = \begin{pmatrix}
 4 & 5 \\
 2 & 2
\end{pmatrix}, \quad \gamma = \begin{pmatrix}
 4 & 5 \\
 3 & 3
\end{pmatrix}, \quad \delta = \begin{pmatrix}
 4 & 5 \\
 2 & 1
\end{pmatrix}, \quad \theta = \begin{pmatrix}
 4 & 5 \\
 2 & 3
\end{pmatrix}, \quad \phi = \begin{pmatrix}
 4 & 5 \\
 1 & 3
\end{pmatrix}
\]

where \(x = \begin{pmatrix}
 1 & 2 & 3 \\
 4 & 4 & 4
\end{pmatrix} \) means that \(1x = 4, 2x = 4, 3x = 4 \) and similarly others. The composition table for the \(\Gamma \)-semigroup \(S \) is given by the following table where \(xy \) means the usual composition
Here $xx\delta x = x$, $yvyvy = y$, $z\theta z\phi z = z$. Therefore (S,Γ) is a regular Γ-semigroup. But we note that though (S,Γ) is a regular Γ-semigroup, S_α is not a regular semigroup, for there is no element p in S for which $z\alpha p\alpha z = z$ holds. Also we note that S_Θ is a regular semigroup.

Example 1.3. The Γ-semigroup $(LR(M,N), LR(N,M))$ (Example 1.9 of Chapter 1) of all linear relations from a vector space M into another vector space N over the same field F is a regular Γ-semigroup. Indeed for $A \in LR(M,N)$ we define $A^{-1} = \{(n,m) \in N \times M : (m,n) \in A\}$. We now show that $A^{-1} \in LR(N,M)$.

- 52 -
For this let \((n_1, m_1) \in A^{-1}, (n_2, m_2) \in A^{-1}\) and \(a \in \Gamma\), then
\((m_1, n_1) \in A, (m_2, n_2) \in A\) and consequently \((m_1 + m_2, n_1 + n_2) \in A\) and \((am_1, an_1) \in A\). Hence \((n_1 + n_2, m_1 + m_2) \in A^{-1}\) and \((an_1, am_1) \in A^{-1}\) that is \(a(n_1, m_1) \in A^{-1}\). Therefore \(A^{-1} \subseteq LR(N, M)\). Now we prove that \(AA^{-1}A = A\). As \((m, n) \in A\) implies that \((m, n) \in A, (n, m) \in A^{-1}, (m, n) \in A\) we have \((m, n) \in AA^{-1}A\). That is \(A \subseteq AA^{-1}A\). Conversely \((m, n) \in AA^{-1}A\) implies that there exist \(m_1 \in M, n_1 \in N\) such that \((m, n) \in A, (n_1, m_1) \in A^{-1}\) and \((m_1, n) \in A\). So we have \((m, n_1) \in A, (-m_1, n) \in A\) and \((m_1, n) \in A\) implying \((m - m_1 + m_1, n_1 - n_1 + n) \in A\).

That is \((m, n) \in A\). Consequently \(AA^{-1}A \subseteq A\). Thus \(AA^{-1}A = A\).

This implies that \(A\) is regular. Thus the \(\Gamma\)-semigroup

\((LR(M, N), LR(N, M))\)

is a regular \(\Gamma\)-semigroup.

Let \((S, \Gamma, \mu)\) be a regular \(\Gamma\)-semigroup which we denote by \((S, \Gamma)\). Let us define \(* : S \times \Gamma \times S \to S\) by \((a, \alpha, b)^* = b\alpha a\) for all \(a, b \in S, \alpha \in \Gamma\) where \(b\alpha a = (b, a, a)\mu\). We now show that \((S, \Gamma, *)\) is also a regular \(\Gamma\)-semigroup. For this let \(a, b, c \in S\) and \(\alpha, \beta \in \Gamma\). Then

\((a\alpha \beta)^*, \beta, \alpha)^* = (b\alpha a, \beta, \alpha)^* = c\beta (b\alpha a) = (c\beta b) \alpha a = (a, \alpha, c\beta b)^* = (a, \alpha, (b, \beta, c)^*)^*\).

Thus \((S, \Gamma, *)\) is a \(\Gamma\)-semigroup. Now for any \(a \in S\), we have \(b \in S\) and \(\alpha, \beta \in \Gamma\) such that \(a = a\alpha \beta a\) since \((S, \Gamma)\) is a regular \(\Gamma\)-semigroup. Now

\(((a, \alpha, b)^*, \alpha, a)^* = (b\alpha a, \alpha, a)^* = a\alpha \beta a = a\).

So \(a\) is regular in \((S, \Gamma, *)\). Consequently \((S, \Gamma, *)\) is a regular \(\Gamma\)-semigroup. We
denote this Γ'-semigroup by (S,Γ').

Let (S,Γ') and (S',Γ') be two regular Γ'-semigroups. Let us define $\mu : (S \times S') \times (\Gamma \times \Gamma') \times (S \times S') \to S \times S'$ by

$\mu((s,s'),(a,a'),(t,t')) = (s\alpha t, s'\alpha' t')$ for all $(s,s'), (t,t') \in S \times S'$ and $(a,a') \in \Gamma \times \Gamma'$. Then $(S \times S', \Gamma \times \Gamma', \mu)$ is a regular Γ'-semigroup. To prove this let us write

$\mu((s,s'),(a,a'),(t,t'))$ simply as $(s,s')(a,a')(t,t')$. Then for $(s,s'), (t,t'), (u,u') \in S \times S'$ and $(a,a'), (\beta,\beta') \in \Gamma \times \Gamma'$ we have

$[(s,s')(a,a')(t,t')](\beta,\beta')(u,u') = (s\alpha t, s'\alpha' t')(\beta,\beta')(u,u') = (s\alpha(t\beta u), s'\alpha'(t'\beta' u')) = (s,s')(a,a')(t\beta u, t'\beta' u')$.$\Gamma'$-semigroup. To prove that it is a regular Γ'-semigroup let $(a,a') \in S \times S'$. Since both (S,Γ') and (S',Γ') are regular Γ'-semigroups, we have $b \in S$, $b' \in S'$, $a, \beta \in \Gamma$, $a', \beta' \in \Gamma'$ such that $a = a\beta b a$ and $a' = a'\beta' b' a'$. Now we have (a,a'), $(b,b') \in S \times S'$, $(\alpha,\alpha'), (\beta,\beta') \in \Gamma \times \Gamma'$ and $(a,a')(\alpha,\alpha')(b,b')(\beta,\beta')(a,a') = (a\alpha b a, a'\alpha' b' a') = (a,a')$. Thus (a,a') is a regular element. Consequently $(S \times S', \Gamma \times \Gamma', \mu)$ is a regular Γ'-semigroup. We denote this Γ'-semigroup simply by $(S,\Gamma') \times (S',\Gamma')$.

Let $S = \mathcal{P}^T(A,B)$ denote the set of all partial mappings including
the empty mapping from a nonempty set \(A \) into the set \(B \) and \(\Gamma = \emptyset T(B,A) \). Then it is easy to see that \((\emptyset T(A,B), \emptyset T(B,A)) \)
is a regular \(\Gamma \)-semigroup if we define for \(f, g \in S \) and \(\alpha \in \Gamma \),
\[
fg = \{(a,b) \in A \times B: \text{there exists } b_1 \in B, a_1 \in A \text{ for which } (a,b_1) \in f, (b_1,a_1) \in \alpha \text{ and } (a_1,b) \in g\}.
\]
As \((\emptyset T(A,B), \emptyset T(B,A)) \) is regular \(\Gamma \)-semigroup by our above discussion \((\emptyset T(A,B), \emptyset T(B,A)) \) * is also a regular \(\Gamma \)-semigroup. Consequently \((\emptyset T(A,B), \emptyset T(B,A)) \times (\emptyset T(A,B), \emptyset T(B,A)) * \) is a regular \(\Gamma \)-semigroup.

A faithful representation of regular semigroup was given by Lallement in [7]. Here we give a faithful representation of a regular \(\Gamma \)-semigroup.

Theorem 1.1 [35] Let \((S, \Gamma) \) be a regular \(\Gamma \)-semigroup. Let \(A = S \times \Gamma \) and \(B = S \). For each \(a \in S \) and each \(\theta \in \Gamma \) define
\[
\gamma_a = \{((x,\alpha), y) \in A \times B: y = a\alpha x \text{ and } (x,y) \in \mathcal{R}\},
\]
\[
\delta_a = \{((x,\beta), y) \in A \times B: y = x\beta a \text{ and } (x,y) \in \mathcal{R}\},
\]
\[
\lambda_\theta = \{(x, (x, \theta)) \in B \times A\}
\]
Then \((\delta, \psi) : (S, \Gamma) \rightarrow (\emptyset T(A,B), \emptyset T(B,A)) \times (\emptyset T(A,B), \emptyset T(B,A)) * \)
defined by \(a\delta = (\delta_a, \gamma_a) \) and \(\theta\psi = (\lambda_\theta, \lambda_\theta) \) is a monomorphism.

Proof. Let \(a, b \in S \) and \(\theta \in \Gamma \) we prove that \(\delta_a \lambda_\theta \delta_b = \delta_{a\theta b} \).

For this let \((x, \alpha) \in \text{dom}(\delta_a \lambda_\theta \delta_b) \). Then we have \((x, x\alpha a) \in \mathcal{R} \)
and \((x^a, x^a \theta b) \in R\), which implies that \((x, x^a \theta b) \in R\) since \(R\) is an equivalence relation. Consequently \((x, a) \in \text{dom}(S_{a \theta b})\).

Conversely if \((x, a) \in \text{dom}(S_{a \theta b})\) then \((x, x^a \theta b) \in R\).

Consequently \(\bigcap S = x^a \theta b \bigcap S \subseteq x^a \bigcap S \subseteq x \bigcap S\). So we have \(\bigcap S = x^a \bigcap S\). Therefore \((x, x^a) \in R\), since \(R\) is an equivalence relation it now follows that \((x^a, x^a \theta b) \in R\).

Here \((x, a) \in \text{dom}(S_a \gamma \theta S_b)\). Therefore \(\text{dom}(S_a \gamma \theta S_b) = \text{dom}(S_{a \theta b})\). Also we have \((x, a) \in S_a \gamma \theta S_b = (x, a) \in S_{a \theta b}\) for all \((x, a) \in \text{dom}(S_a \gamma \theta S_b)\). Therefore \(S_a \gamma \theta S_b = S_{a \theta b}\). Next we prove that \(Y_a \gamma \theta Y_b = Y_b \theta \alpha a\). For this let \((x, a) \in \text{dom}(Y_a \gamma \theta Y_b)\), then \((x, a \alpha x) \in L\) and \((a \alpha x, b \theta a \alpha x) \in L\). So we have

\((x, b \theta a \alpha x) \in L\), since \(L\) is an equivalence relation. Consequently \((x, a) \in \text{dom}(Y_{b \theta \alpha a})\). Conversely, let \((x, a) \in \text{dom}(Y_{b \theta \alpha a})\) then \((x, b \theta a \alpha x) \in L\). Consequently \(S \bigcap x = S \bigcap b \theta a \alpha x \subseteq S \bigcap a \alpha x \subseteq S \bigcap x\).

So \(S \bigcap x = S \bigcap a \alpha x\) implying that \((x, a \alpha x) \in L\). Since \(L\) is an equivalence relation, we have \((a \alpha x, b \theta a \alpha x) \in L\). Hence

\((x, a) \in \text{dom}(Y_a \gamma \theta Y_b)\). Therefore \(\text{dom}(Y_{b \theta \alpha a}) = \text{dom}(Y_a \gamma \theta Y_b)\).

Thus \(Y_a \gamma \theta Y_b = Y_b \theta \alpha a\). Now \((a \theta b) \Phi = (S_{a \theta b}, Y_{a \theta b}) = (S_a \gamma \theta S_b, Y_b \gamma \theta Y_a) = (S_a \gamma \theta S_b, (Y_a \gamma \theta Y_b)^x) = (S_a \gamma \theta S_b, Y_a \gamma \theta Y_b) = a \theta b \psi \theta b\). Therefore \((\Phi, \Psi)\) is a homomorphism from \((S, \bigcap)\) into \((\Theta T(A, B), \Theta T(B, A)) \times (\Theta T(A, B), \Theta T(B, A))^x\). We now show that both \(\Phi\) and \(\Psi\) are one to one. For
this let $a_0 = b_0$ then $(S_a, Y_a) = (S_b, Y_b)$. Consequently we have $S_a = S_b$ and $Y_a = Y_b$. Let $a' \in V_\alpha(a)$ for some $\alpha, \beta \in \Gamma$. Then $(a' \beta a, a) \in \mathcal{L}$ so $((a' \beta a, \alpha), a) \in Y_a = Y_b$. Thus $a = b_0 a' \beta a$.

Again $(a \alpha a', a) \in \mathcal{R}$ so $((a \alpha a', \beta), a) \in S_a = S_b$. Therefore $a = a \alpha a' \beta b \in S \Gamma b$. Now for $b' \in V_\theta(b)$ for some $\theta, \mu \in \Gamma$.

$(b \theta b', b) \in \mathcal{R}$ so $((b \theta b', \mu), b) \in S_b = S_a$. Thus $b = b \theta b' \mu a \in S \Gamma a$.

Consequently we have $S \Gamma b = S \Gamma a$, so $(a, b) \in \mathcal{L}$. Hence there exist $u \in S$, $\gamma \in \Gamma$ such that $b = u \gamma a = u \gamma a \alpha a' \beta a = b_0 a' \beta a = a$.

Hence ϕ is one to one. Next let $\theta_1 \psi = \theta_2 \psi$ for $\theta_1, \theta_2 \in \Gamma$.

Then $(\lambda_{\theta_1}, \lambda_{\theta_1}) = (\lambda_{\theta_2}, \lambda_{\theta_2})$. Hence $x \lambda_{\theta_1} = x \lambda_{\theta_2}$ for all $x \in B$. Therefore we have $(x, \theta_1) = (x, \theta_2)$ implying $\theta_1 = \theta_2$.

Thus ψ is one to one. Hence (ϕ, ψ) is a monomorphism from the regular Γ-semigroup (S, Γ) into the regular Γ-semigroup $(\hat{\Theta}(A, B), \hat{\Theta}(B, A)) x (\hat{\Theta}(A, B), \hat{\Theta}(B, A))^*$.

2. **SOME PROPERTIES OF REGULAR Γ-SEMIGROUPS**

In this section we study those regular Γ-semigroups in which any two α-idempotents are α-commutative. We also find out a necessary and sufficient condition for a regular Γ-semigroup to be simple.

LEMMA 2.1. Every α-idempotent e in a Γ-semigroup (S, Γ) is
such that for any a in R_e we have $e a a = a$ and for any b in L_e we have $b a e = b$ where R_e and L_e are respectively \mathcal{Q}-class and \mathcal{L}-class containing e.

Proof. Let $a \in R_e$. Then $a \in e \mathcal{L} S$. So $a = e s \beta$ for some $\beta \in \mathcal{L}$ and $s \in S$. So $e a a = e \epsilon e \beta s = e \beta s = a$. Next let $b \in L_e$. Then $b \in S \mathcal{L} e$, so $b = t \gamma e$ for some $t \in S$ and $\gamma \in \mathcal{L}$. Therefore $b a e = t \gamma e \epsilon e = t \gamma e = b$.

Theorem 2.2. In a regular \mathcal{L}-semigroup (S, \mathcal{L}) the following conditions are equivalent.

(i) For all a belonging to S, $|\mathcal{V}_\alpha(a)| = 1$ if $\mathcal{V}_\alpha(a) \neq \emptyset$.

(ii) If e and f are two a-idempotents then $e a f = f a e$ where $a \in \mathcal{L}$.

(iii) Each \mathcal{Q}-class and each \mathcal{R}-class of (S, \mathcal{L}) contains a unique a-idempotent for some $a \in \mathcal{L}$.

(iv) Each principal left \mathcal{L}-ideal and each principal right \mathcal{L}-ideal of (S, \mathcal{L}) contains a unique a-idempotent generator for some $a \in \mathcal{L}$.

Proof. Suppose (i) holds. Let $a \in \mathcal{V}_\beta^\gamma(e a f)$ for some $\beta, \gamma \in \mathcal{L}$. Then $e a f = (e a f) \beta a \gamma(e a f)$ and $a = a \gamma(e a f) \beta \ a$. Now

$$(f \beta a \gamma e) a (f \beta a \gamma e) = f \beta(a \gamma e a f \beta a) \gamma e = f \beta a \gamma e.$$

Therefore $f \beta a \gamma e$ is an a-idempotent. Also $(e a f) a (f \beta a \gamma e) a (e a f) = (e a f) \beta a \gamma(e a f) = e a f$.
and $(f^a \beta e \gamma e) \alpha(a(eaf) \alpha(\beta \gamma e)) = f \beta (a(eaf \beta e) \gamma e) = f \beta \gamma e$. Hence $eaf \in V^\alpha(\beta \gamma e)$. But $f \beta \gamma e$ being an α-idempotent, belongs to $V^\alpha(\beta \gamma e)$. Therefore $eaf = f \beta \gamma e$ by (i). Hence eaf is an α-idempotent. Also fae is an α-idempotent of (S, Γ').

Indeed, if $b \in V^\beta(\gamma e)$, then $(\gamma e) \beta f(\gamma e) = \gamma e$ and $b \beta \gamma e \in b = b$.

Then $(e \beta \theta f) \alpha(e \beta \theta f) = e \beta (b \beta \gamma e \in b) \theta f = e \beta \theta f$. Thus $e \beta \theta f$ is an α-idempotent. Also, $(\gamma e) \alpha(e \beta \theta f) \alpha(\gamma e) = (\gamma e) \beta \theta (\gamma e) = \gamma e$ and $(e \beta \theta f) \alpha(e \beta \theta f) \alpha(e \beta \theta f) = (e \beta \theta f) \alpha(e \beta \theta f) = e \beta \theta f$. Hence $fae \in V^\alpha(e \beta \theta f)$. But $e \beta \theta f$ being α-idempotent belongs to $V^\alpha(e \beta \theta f)$. Hence $fae = e \beta \theta f$. Thus fae is an α-idempotent of (S, Γ'). Now $(eaf) \alpha(\beta \gamma e) \alpha(eaf) = (eaf) \alpha(fae)$ $= eaf$ and $(fae) \alpha(eaf) \alpha(fae) = (fae) \alpha(fae) = fae$. So $fae \in V^\alpha(fae)$.

But $eaf \in V^\alpha(fae)$. Therefore by (i) $eaf = fae$ which is (ii).

Thus (i) implies (ii).

Next let us assume (ii).

Since (S, Γ') is a regular Γ'-semigroup, every \mathcal{L}-class contains atleast one α-idempotent for some $\alpha \in \Gamma$, by Lemma I.5.1.

We now show that this α-idempotent is unique. If e and f are \mathcal{L}-equivalent α-idempotents, then by Lemma 2.1 $f = f \alpha e = eaf = e$.

Similarly if e and f are \mathcal{R}-equivalent α-idempotents, then $f = eaf = f \alpha e = e$. Thus (ii) implies (iii).

Let us now assume (iii).
Let \((a)_1\) be any principal left \(\Gamma\)-ideal generated by \(a\) in \(S\). Then by (iii) \(L_a\), the \(\mathcal{L}\)-class containing \(a\), contains a unique \(\alpha\)-idempotent for atleast one \(\alpha \in \Gamma\). Let \(e\) be an \(\alpha\)-idempotent belonging to \(L_a\). Then \((a)_1 = (e)_1\). So each principal left \(\Gamma\)-ideal contains a unique \(\alpha\)-idempotent generator for atleast one \(\alpha \in \Gamma\). Similarly each principal right \(\Gamma\)-ideal contains a unique \(\alpha\)-idempotent generator for atleast one \(\alpha \in \Gamma\). Thus (iii) implies (iv).

Finally we assume (iv).

Let \(a', a'' \in V_{\beta}(a)\) for some \(\alpha, \beta \in \Gamma\) and \(a \in S\). Then
\[a = \alpha a' \beta a, \quad a' = \alpha' \beta a' a, \quad a = \alpha a'' \beta a \text{ and } a'' = \alpha'' \beta a'' a'.\]

Now \(\alpha a'\) and \(\alpha a''\) are \(\beta\)-idempotents of \((S, \Gamma)\) and
\[(a)_r = (\alpha a')_r = (\alpha a'')_r.\]
Consequently \(\alpha a' = \alpha a''\).

Similarly \(\alpha' \beta a\) and \(\alpha'' \beta a\) are \(\alpha\)-idempotents of \((S, \Gamma)\) and
\[(a)_1 = (\alpha' \beta a)_1 = (\alpha'' \beta a)_1.\]
Consequently \(\alpha' \beta a = \alpha'' \beta a\). So
\[a' = \alpha' \beta a a' = \alpha' \beta a a' = \alpha'' \beta a a'' = a''.\]
Thus (iv) implies (i).

This completes the proof of the theorem.

In [23] we call a regular \(\Gamma\)-semigroup which satisfies the conditions given in the above theorem, an inverse \(\Gamma\)-semigroup. We now give an example of inverse \(\Gamma\)-semigroup.

DEFINITION: Let \(A\) and \(B\) are two nonempty sets. Then any
subset of $A \times B$ is called a binary relation from the set A into the set B. A binary relation f from the set A into the set B is called a one to one partial mapping from the set A into the set B if the following conditions hold:

1. $(x, y) \in f$ and $(x, y') \in f$ imply that $y = y'$
2. $(x', y) \in f$ and $(x, y) \in f$ imply that $x = x'$.

Example 2.1. Let $S = \mathcal{P}(A, B)$ denote the set of all one to one partial mappings from the set A into the set B including the empty mapping and $\Gamma = \mathcal{P}(B, A)$ denote the set of all one to one partial mappings from the set B into the set A. Let $f, g, h \in S$ and $\alpha, \beta, \gamma \in \Gamma$. We define

$$f \circ g = \{(a, b) \in A \times B : \text{there exist } a_1 \in A, b_1 \in B \text{ for which } (a, b_1) \in f, (b_1, a_1) \in \alpha, (a_1, b) \in g\}.$$

It can be shown easily that $f \circ g$ is a one to one partial mapping and $(f \circ g) \circ h = f \circ (g \circ h)$ for all $f, g, h \in S$ and $\alpha, \beta \in \Gamma$. Hence (S, \circ) is a Γ-semigroup.

We now show that (S, \circ) is a regular Γ-semigroup. Let $f \in S$ then $f : \text{dom } f \to \text{ran } f$ is one to one. Let $f^{-1} : \text{ran } f \to \text{dom } f$ be such that $ff^{-1} = 1_{\text{dom } f}$ and $f^{-1}f = 1_{\text{ran } f}$ where $1_{\text{dom } f}$ denotes the identity mapping on $\text{dom } f$ ($\text{dom } f = \text{domain of } f$, $\text{ran } f = \text{range of } f$). It is immediate that $f^{-1} \in \Gamma$. Now

$$f = ff^{-1}ff^{-1} \in f \Gamma S \Gamma f.$$

Thus (S, \circ) is a regular Γ-semigroup.
Next we show that for any two \(\alpha \)-idempotents \(f, h \) of \((S, \Gamma)\) we have \(fah = haf \) where \(\alpha \in \Gamma \). If an element \(f \in S \) be an \(\alpha \)-idempotent then \(f\alpha = 1_X \) where \(X = \text{dom} f \) and conversely if \(f\alpha = 1_X \), where \(X = \text{dom} f \), then \(f \) is an \(\alpha \)-idempotent. Now if \(f, h \) are any two \(\alpha \)-idempotents in \((S, \Gamma)\). We prove that \(fah = haf \).

Now \(\alpha = 1_X \) where \(X = \text{dom} f \) and \(h\alpha = 1_Y \) where \(Y = \text{dom} h \). Then \(\text{dom}(fah) = \text{dom}(1_Xh) = (X \cap Y) 1_X^{-1} = X \cap Y \), \(\text{ran}(fah) = \text{ran}(1_Xh) = (X \cap Y) h \), \(\text{dom}(haf) = \text{dom}(1_Yf) = (Y \cap X) 1_Y^{-1} = Y \cap X = X \cap Y \) and \(\text{ran}(haf) = \text{ran}(1_Yf) = (Y \cap X) f = (X \cap Y) f \).

We now show that \((X \cap Y) f = (X \cap Y) h\). If possible let \((X \cap Y) f \neq (X \cap Y) h\). Then \((X \cap Y) f \neq (X \cap Y) h\). That is \((X \cap Y) 1_X \neq (X \cap Y) 1_Y \). Then \(X \cap Y \neq X \cap Y \), which is absurd. Hence \(fah \) and \(haf \) have same domain and range. Let \(\alpha \in X \cap Y \). Then \(a1_Y = a1_X \) implies that \(ah\alpha = a\alpha f \) that is \(ah = af \) (since \(\alpha \) is one to one). Then \((a1_X) h = (a1_Y) f\), that is \((a) fah = (a) haf \). Consequently \(fah = haf \). Thus the \(\Gamma \)-semigroup \((S, \Gamma)\) is an inverse \(\Gamma \)-semigroup.

Theorem 2.3. If in a regular \(\Gamma \)-semigroup \((S, \Gamma)\) no \(\alpha \)-idempotent has \((\alpha, \alpha) \) inverse other than itself then the \(\Gamma \)-semigroup \((S, \Gamma)\) is an inverse \(\Gamma \)-semigroup and conversely.
PROOF. Suppose that the given condition holds in \((S, \Gamma')\) We prove that \((S, \Gamma')\) is an inverse \(\Gamma\)-semigroup. Since \((S, \Gamma)\) is a regular \(\Gamma\)-semigroup, by Lemma 1.5.1, each \(L\)-class has at least one \(\alpha\)-idempotent for some \(\alpha \in \Gamma\). If possible let one of the \(L\)-classes contains two \(\alpha\)-idempotents \(e\) and \(f\). Then by Lemma 2.1 \(eaf = e\) and \(fae = f\). So we get \(eafae = e\) and \(faeaf = f\). Therefore \(e, f \in V^\alpha(e)\). By our assumption \(e = f\). So \((S, \Gamma)\) is an inverse \(\Gamma\)-semigroup. Converse is obvious.

Lemma 2.4. Let \((S, \Gamma)\) be a regular \(\Gamma\)-semigroup and \((T, \Gamma')\) be another \(\Gamma\)-semigroup. Let \((f, g)\) be a homomorphism from \((S, \Gamma)\) onto \((T, \Gamma')\). Let \(e'\) be an \(\alpha'\)-idempotent of \((T, \Gamma')\) then \(e'f^{-1}\) contains an idempotent of \((S, \Gamma)\).

Proof. Let \(a \in S\) be such that \(af = e' = e'\alpha'e'\), where \(\alpha' \in \Gamma'\). Let \(a \in \Gamma\) be such that \(ag = \alpha'\). Now let us consider the element \(aa\). As \((S, \Gamma)\) is a regular \(\Gamma\)-semigroup there exist \(b, \beta, \gamma \in S\) and \(\beta, \gamma \in \Gamma\) such that \((a\alpha\beta)\beta\gamma(a\alpha\beta) = a\alpha\beta\gamma(a\alpha\beta)\beta\gamma = b\). Now \((a\beta\gamma\alpha)(a\beta\gamma\alpha) = a\beta(b\alpha\gamma(a\alpha\beta)\gamma\alpha = a\beta\gamma\alpha\). So \(a\beta\gamma\alpha\) is an \(\alpha\)-idempotent in \((S, \Gamma)\). Also
\[
(a\beta\gamma\alpha)f = (af)(\beta\gamma)(bf)(\gamma)(af) = e'\alpha'e'(\beta\gamma)(bf)(\gamma)e'\alpha'e' = (a\alpha\beta)(\beta\gamma)(bf)(\gamma)(a\alpha\beta)f = (a\alpha\beta)(b\alpha\gamma(a\alpha\beta)\gamma)(a\alpha\beta)f = (a\alpha\beta)f = e'.
\]
Hence \(e'f^{-1}\) contains an idempotent of \((S, \Gamma)\).
LEMMA 2.5. Let \((S, \Gamma')\) be a regular \(\Gamma^\prime\)-semigroup and \((S', \Gamma'')\) be a \(\Gamma^\prime\)-semigroup. Let \((f, g)\) be a homomorphism from \((S, \Gamma')\) onto \((S', \Gamma'')\). Then \((S', \Gamma'')\) is also a regular \(\Gamma^\prime\)-semigroup.

PROOF. Let \(a^\prime = af\) be an element of \(S'\) where \(a \in S\). Since \((S, \Gamma')\) is a regular \(\Gamma^\prime\)-semigroup there exist \(b \in S\) and \(\alpha, \beta \in \Gamma\) such that \(a = \alpha a b \beta a\). Then \(a^\prime = af = (a \alpha a b \beta a) f = (af)(\alpha g)(bf)(\beta g)(af) = a^\prime (\alpha g)(bf)(\beta g) a^\prime\). Thus \(a^\prime\) is regular. Hence \((S', \Gamma'')\) is a regular \(\Gamma^\prime\)-semigroup.

THEOREM 2.6. Let \((S, \Gamma')\) be an inverse \(\Gamma^\prime\)-semigroup and \((S', \Gamma'')\) be another \(\Gamma^\prime\)-semigroup. Let \((f, g)\) be a homomorphism from \((S, \Gamma')\) onto \((S', \Gamma'')\). Then \((S', \Gamma'')\) is also an inverse \(\Gamma^\prime\)-semigroup.

PROOF. By Lemma 2.5 \((S', \Gamma'')\) is a regular \(\Gamma^\prime\)-semigroup. Now we show that for any two \(\alpha^\prime\)-idempotents \(e_1', e_2'\) of \((S', \Gamma'')\) we have \(e_1' \alpha^\prime e_2' = e_2' \alpha^\prime e_1'\). Since \((f, g)\) is onto homomorphism there exist (by Lemma 2.4) \(e_1, e_2 \in S\) and \(\alpha \in \Gamma\) such that \(e_1\) and \(e_2\) are \(\alpha\)-idempotents and \(e_1 f = e_1', \alpha g = \alpha'\) (\(i = 1, 2\)).

As \((S, \Gamma')\) is an inverse \(\Gamma^\prime\)-semigroup we have \(e_1 \alpha e_2 = e_2 \alpha e_1\).

Therefore \((e_1 \alpha e_2) f = (e_2 \alpha e_1) f\) that is \(e_1' \alpha' e_2' = e_2' \alpha' e_1'\)

Hence \((S', \Gamma'')\) is an inverse \(\Gamma^\prime\)-semigroup.
We define a \(\Gamma \)-semigroup to be simple if it has no proper \(\Gamma \)-ideal. Now we find out a necessary and sufficient con­dition for a regular \(\Gamma \)-semigroup to be simple.

DEFINITION Let \((S, \Gamma)\) be a regular \(\Gamma \)-semigroup and \(E \) be the set of all idempotents of \((S, \Gamma)\). If \(e, f \in E \) be such that \(eae = e, f \beta f = f \) where \(\alpha, \beta \in \Gamma \), then we define "\(\leq \)" on \(E \) by \(e \leq f \) if and only if \(e = e\alpha f = f\beta e \).

LEMMA 2.7. A \(\Gamma \)-semigroup \((S, \Gamma)\) is simple if and only if \(S = S \Gamma a \Gamma S \) for all \(a \in S \).

PROOF. If \((S, \Gamma)\) is a simple \(\Gamma \)-semigroup then obviously \(S = S \Gamma a \Gamma S \) for all \(a \in S \). Conversely let \(S \Gamma a \Gamma S = S \) for all \(a \in S \). If \(I \) is a \(\Gamma \)-ideal of \((S, \Gamma)\) and \(a \in I \) then \(S \Gamma a \Gamma S \subseteq I \) that is \(S \subseteq I \). Consequently \(S = I \). Thus \((S, \Gamma)\) is simple \(\Gamma \)-semigroup.

THEOREM 2.8. A regular \(\Gamma \)-semigroup \((S, \Gamma)\) is simple if and only if for any two idempotents \(e \beta e = e \) and \(f \delta f = f \) of \((S, \Gamma)\), there exists an element \(a \) in \(S \) with \(a' \in \mathcal{V}_e(a) \) such that \(a \gamma a' = e \) and \(a' \beta a \leq f \).

PROOF. Suppose that the given condition is satisfied. Let \(a, b \) be any two elements of \(S \). Let \(a' \in \mathcal{V}_e(a) \) and \(b' \in \mathcal{V}_f(b) \).
Let $aa' = e$ and $b' = f$. Then e is a β-idempotent and f is a γ-idempotent. So there exists an element u with $u' \in V(\gamma)(u)$ in S such that $u \in u' = e$ and $u' \beta u \subseteq f$. Now

$$ u \in b' \subseteq u' \beta a = (u \in u' \beta u) \subseteq (b' \subseteq (b' \subseteq u' \beta a = u \in u' \beta u \subseteq u' \beta a = e \beta e a = e \beta a = aa' \beta a = a. $$

Thus there exist $c = u$ and $d = b' \subseteq u' \beta a$ in S such that $c \subseteq b \subseteq d = a$. Therefore (S, Γ) is simple.

Conversely let (S, Γ) be simple and $e \subseteq e = e$ and $f \subseteq f = f$ be two idempotents of (S, Γ). Then there exist $a', b' \in S$ such that $e = a' \subseteq f \subseteq b'$. That is $e = (e \subseteq f \subseteq f \subseteq f \subseteq b' \subseteq e) = a \subseteq b$ (where $a = e \beta a \in \subseteq f \subseteq b' \subseteq e$ and $b = f \subseteq b' \subseteq e$) with $e \beta a = a = a \subseteq f$ and $f \subseteq b = b = b \subseteq e$. Therefore $a \subseteq b \subseteq a = (a \subseteq f \subseteq b) \subseteq a = e \beta a = a$ and $b \subseteq b = b \subseteq (a \subseteq f \subseteq b) = b \subseteq e = b$. Thus $b \in V(\gamma)(a)$. Also $a \subseteq b = a \subseteq f \subseteq b = e$, and $(b \beta a) \subseteq f = b \beta a$, $f \subseteq (b \beta a) = (f \subseteq b) \beta a = b \beta a$ that is $b \beta a \subseteq f$. This completes the proof of the theorem.

We complete this section with the following theorem which is exceedingly useful in the location of inverses of a regular element.

Theorem 2.9. Let a be an element of a regular \mathcal{J}-class D of a Γ-semigroup (S, Γ).

(i) If $a' \in V(\gamma)(a)$ then $a', e \in D$ and the two H-classes $R_a \cap L_a, L_a \cap R_a$, contain respectively β-idempotent aa' and
(ii) If \(b \in D \) be such that \(R_a \cap R_b \) contain respectively \(\alpha \)-idempotent \(e \) and \(\beta \)-idempotent \(f \) then \(H_b \) contains a
\((\beta, \alpha)\) inverse \(a^* \) of \(a \) such that \(a\beta a^* = e \) and \(a^*\alpha a = f \).

Proof. (i) If \(a \in D \), then an \((\alpha, \beta)\) inverse \(a^* \) of \(a \) must belong

to \(D \). Because \(a^* \alpha a \in L_a \) imply \(a \in L_a \). Also \(a \alpha a \in R_a \),

\(a \alpha a \in L_a \), imply \(R_a \cap L_a \) contains the \(\beta \)-idempotent \(a \alpha a \).

Similarly \(a \beta a \beta a \in L_a \) imply \(a \beta a \in L_a \).

(ii) As \(a \in e \) by Lemma 2.1 \(e \alpha a = a \). Similarly \(a \notin f \) implies

that \(a \beta f = a \). Now \(a \in e \) implies that \(e = a \gamma t \) for some \(\gamma \in \Gamma \) and

\(t \in S \). Let \(a^* = f \gamma t a e \). Then \(a \beta a \alpha a = a \beta (f \gamma t a e) \alpha a = (a \beta f) \gamma t a e (e \alpha a) = a \gamma t a e = e \alpha a = a \) and \(a^* \alpha a \beta a^* = (f \gamma t a e) \alpha a \beta (f \gamma t a e) = f \gamma t a a \gamma t a e = f \gamma t a \alpha e = a^* \). Therefore \(a^* \in \forall \beta(a) \). Moreover

\(a \beta a^* = a \beta (f \gamma t a e) = (a \beta f) \gamma t a e = a \gamma t a e = e \alpha a = e \).

As \(a = a \beta a^* a \), we have \((a) \downarrow = S \gamma a \). Since \(a \notin f \) we have \(f = S \gamma a \) for some \(s \in S \). Hence \(a^* \alpha a = (f \gamma t a e) \alpha a = f \gamma t a e = s \gamma a \gamma t a e = s \alpha e = s \gamma a = f \). Therefore \(a^* \in L_a R_f = L_a \cap R_f = H_f \).

This theorem allows us to locate the inverses of a regular

element provided that we know where the idempotents are. For

example in a finite \(\Gamma \)-semigroup, we can say immediately that

the number of \((\alpha, \beta)\)-inverses of a regular element \(a \) is the number
of α-idempotents in L_a multiplied by the number of β-idempotents in R_a.

3. Γ-GROUP CONGRUENCES ON REGULAR Γ-SEMGROUPS

We know that Γ-groups are regular Γ-semigroups. But the converse is not true. In this section we study those congruences \wp on a regular Γ-semigroup (S, Γ) for which $(S/\wp, \Gamma)$ become Γ-groups. We call such a congruence \wp on (S, Γ) a Γ-group congruence. Here we give some equivalent expressions for any Γ-group congruence on a regular Γ-semigroup. We define closed normal family on a regular Γ-semigroup and finally establish one to one order preserving correspondence between the set of all closed normal families and the set of all Γ-group congruences on a regular Γ-semigroup. The group congruences on regular semigroups was studied by LaTorre in [9]. The results of this section are from [33] and actually generalise some of the results of [9].

First let us recall an important theorem from [24].

THEOREM 3.1. A regular Γ-semigroup (S, Γ) is a Γ-group if and only if for all $\alpha, \beta \in \Gamma$, $e\alpha f = f\alpha e = f$ and $e\beta f = f\beta e = e$ for any two idempotents $e = e\alpha e$ and $f = f\beta f$ of (S, Γ).
DEFINITION: An equivalence relation \mathcal{P} on S of a Γ-semigroup (S, Γ) is called a left (right) congruence if $(a, b) \in \mathcal{P}$ implies $(c a a, c a b) \in \mathcal{P}$ for all $c \in S$ and all $a \in \Gamma$. If \mathcal{P} is both left and right congruence on (S, Γ) then \mathcal{P} is called a congruence on (S, Γ).

Let \mathcal{P} be a congruence on (S, Γ) and S/\mathcal{P} be the set of all equivalence classes of S. If $a^\mathcal{P}$ and $b^\mathcal{P}$ be any two elements of S/\mathcal{P} and $a \in \Gamma$ then we define $(a^\mathcal{P}) a (b^\mathcal{P}) = (a a b)^\mathcal{P}$. Now it is easy to verify that $(S/\mathcal{P}, \Gamma)$ is a Γ-semigroup.

DEFINITION: A congruence \mathcal{P} on a regular Γ-semigroup (S, Γ) is called a Γ-group congruence if $(S/\mathcal{P}, \Gamma)$ is a Γ-group.

Henceforth in this section, we assume (S, Γ) to be a regular Γ-semigroup and E_α to be the set of all α-idempotents of (S, Γ).

DEFINITION: A family $\{K_\alpha : \alpha \in \Gamma\}$ of subsets of S is said to be a normal family if the following hold.

(i) $E_\alpha \subseteq K_\alpha$ for all $\alpha \in \Gamma$.

(ii) For each $a \in K_\alpha$ and $b \in K_\beta$, $a b a \in K_\alpha$ and $a b \in K_\beta$.

(iii) For each $a' \in V_{\alpha}^{\beta}(a)$ and $c \in K_\gamma$, $a c y a'$ and $a y c a' \in K_\beta$.

Now let $e \in E_\alpha$, $f \in E_\beta$ and $\mu \in \Gamma$. Let $x \in V_{\beta}^{\alpha}(e y f)$. Then $f y x y e \in E_\mu$. Thus $E_\mu \neq \emptyset$ for all $\mu \in \Gamma$ and so $K_\mu \neq \emptyset$ for all
\[\mu \in \Gamma. \] We further note that in an orthodox \(\Gamma \)-semigroup \((S, \Gamma) \)
\[[25] \{ E_\alpha : \alpha \in \Gamma \} \] is a normal family of \((S, \Gamma) \).

Let \(N \) be the collection of all normal families \(K_i \) of \((S, \Gamma) \)
\[(i \in \Lambda), \] where \(K_i = \{ K_\alpha^i : \alpha \in \Gamma \} \). Let \(U = \bigcap_{i \in \Lambda} K_i \) and
\[U = \{ U_\alpha : \alpha \in \Gamma \}. \] Then obviously \(E_\alpha \subseteq U_\alpha \). Also if \(a \in U_\alpha \),
\[b \in U_\beta, \] then \(a \in K_i^\alpha \) for all \(i \in \Lambda \), \(b \in K_i^\beta \) for all \(i \in \Lambda \).

Thus \(a \circ b \in K_i^\alpha \) and \(a \circ b \in K_i^\beta \) for all \(i \in \Lambda \) implying \(a \circ b \in U_\beta \) and
\[a \circ b \in U_\alpha. \] Similarly we can show that if \(a' \in V_\alpha^\beta (a) \) and \(c \in U_\gamma \)
then \(a \circ c \gamma a', a \gamma c \circ a' \in U_\beta. \) Thus \(U \) is a normal family of subsets of \(S \) and \(U \) is the least member in \(N \) if we define a partial order in \(N \) by \(K_i \leq K_j \) if and only if \(K_i^\alpha \subseteq K_j^\alpha \) for all \(\alpha \in \Gamma \).

We also observe that when \((S, \Gamma) \) is an orthodox \(\Gamma \)-semigroup,
\[U = \{ E_\alpha : \alpha \in \Gamma \}. \]

Theorem 3.2. Let \((S, \Gamma) \) be a regular \(\Gamma \)-semigroup. Then for each normal family \(K = \{ K_\alpha : \alpha \in \Gamma \} \), \(P_K = \{(a, b) \in S \times S : a \circ e = f \circ b \text{ for some } \alpha, \beta \in \Gamma \text{ and some } e \in K_\alpha, f \in K_\beta \} \) is a \(\Gamma \)-group congruence in \((S, \Gamma) \).

Proof. Let \(a \in S \) and \(a' \in V_\alpha^\beta (a) \). Then \(a \circ (a' \circ b) = (a \circ a') \circ b \)
implies \((a, a) \in P_K \). Next let \((a, b) \in P_K \). Then there exist
\[e \in K_\alpha, f \in K_\beta \] for some \(\alpha, \beta \in \Gamma \) such that \(a \circ e = f \circ b. \) Let \(a' \in V_\alpha^\gamma (a) \)
and \(b' \in \mathcal{V}^b(b) \) then \(\theta(b' \varphi(b)) \varphi(a' \sigma a) = ((b \varphi(b')) \varphi(a \varphi(a'))) \sigma a \).

But \(b' \varphi(b) \in \mathcal{K}_\theta \), \(a' \varphi(a) \in \mathcal{K}_\gamma \) and so \((b' \varphi(b)) \varphi(a' \sigma a) \in \mathcal{K}_\theta \) and \(b \varphi(b) \in \mathcal{K}_\theta \), \(a \varphi(a) \in \mathcal{K}_\gamma \) and so \((b \varphi(b')) \varphi(a \varphi(a')) \in \mathcal{K}_\theta \). Consequently, \((b, a) \in \mathcal{P}_K \).

Now let \((a, b) \in \mathcal{P}_K \), \((b, c) \in \mathcal{P}_K \). Then there exist \(a, \beta, \gamma, \delta \in \Gamma \), \(e \in \mathcal{K}_\alpha \), \(f \in \mathcal{K}_\beta \), \(g \in \mathcal{K}_\gamma \), \(h \in \mathcal{K}_\delta \) such that \(a \varphi a = f \psi b \) and \(b \psi g = h \psi c \). But \(a \psi (e \psi g) = (a \psi e) \psi g = (f \psi b) \psi g = f \psi (b \psi g) = f \psi (h \psi c) = (f \psi h) \psi c \) where \(e \psi g \in \mathcal{K}_\alpha \) and \(f \psi h \in \mathcal{K}_\delta \). Thus \((a, c) \in \mathcal{P}_K \) and consequently \(\mathcal{P}_K \) is an equivalence relation. Let \((a, b) \in \mathcal{P}_K \), \(\theta \in \Gamma \), \(c \in S \). Then \(a \varphi a = f \psi b \) for some \(a, \beta \in \Gamma \) and some \(e \in \mathcal{K}_\alpha \), \(f \in \mathcal{K}_\beta \). Let \(c' \in \mathcal{V}_\gamma^c(c) \), \(\gamma \in \mathcal{V}_\gamma^1(b \psi c) \), \(x \in \mathcal{V}_\gamma^2(a \psi c) \).

Now \((a \psi c) \psi y_2x \in \mathcal{E}_y \in \mathcal{K}_\gamma^1 \) and consequently \(\mathcal{P}_K \) is a congruence on \((S, \Gamma)\). Also as \((S, \Gamma)\) is regular, \((S/\mathcal{P}_K, \Gamma)\) is a regular \(\Gamma \)-semigroup (by Lemma 2.5). Let \(e \in \mathcal{K}_\alpha \), \(f \in \mathcal{K}_\beta \). Then \(e \psi f, f \psi e \in \mathcal{K}_\beta \), \(e \psi f, f \psi e \in \mathcal{K}_\alpha \).

Now \((e \psi f) \psi f = (e \psi f) \psi f \) shows that \((e \psi f, f) \in \mathcal{P}_K \) and \((f \psi e) \psi f = (f \psi e) \psi f \) implies that \((f \psi e, f) \in \mathcal{P}_K \). Thus \((f \psi e, f) \in \mathcal{P}_K \).
and \((f \circ K) \alpha (e \circ K) = f \circ K\). Similarly we can show that
\((e \circ K) \beta (f \circ K) = e \circ K\) and \((f \circ K) \beta (e \circ K) = e \circ K\). So it follows from Theorem 3.1 that \((S/\mathcal{K}, \Gamma)\) is a \(\Gamma\)-group. Thus \(\mathcal{K}\) is a \(\Gamma\)-group congruence on \((S, \Gamma)\).

For any normal family \(K = \{K_\alpha : \alpha \in \Gamma\}\) of a \(\Gamma\)-semigroup \((S, \Gamma)\), the closure \(K_w\) of \(K\) is the family defined by
\[K_w = \{ (K_w)_{\gamma} \mid \gamma \in \Gamma \}\]
where \((K_w)_{\gamma} = \{x \in S : e x \in K_{\gamma}\} \text{ for some } \alpha \in \Gamma \text{ and } e \in K_\alpha\}.

\(K\) is called a closed normal family if \(K = K_w\). The following theorem gives an alternate characterisation of \(\mathcal{K}\).

THEOREM 3.3. Let \((S, \Gamma)\) be a regular \(\Gamma\)-semigroup. For each normal family \(K\), \(\mathcal{K} = \{ (a, b) \in S \times S : a \gamma b' \in (K_w)_\gamma \text{ for some } b' \in V^S_\gamma (b) \}\).

PROOF. Let \((a, b) \in \mathcal{K}\). Then \(f \beta \alpha = bae\) for some \(\alpha, \beta \in \Gamma\) and some \(e \in K_\alpha\), \(f \in K_\beta\). Then \(f \beta (a \gamma b') = bae \gamma b' \in K_\gamma \) for some \(b' \in V^S_\gamma (b)\). Consequently \(a \gamma b' \in (K_w)_\gamma\). Conversely, let \(a \gamma b' \in (K_w)_\gamma\) for some \(b' \in V^S_\gamma (b)\). Then \(e a \gamma b' \in K_\gamma\) for some \(a \in \Gamma\) and some \(e \in K_\alpha\). Therefore \(e a \gamma b' = f\) where \(f \in K_\gamma\). So
\[(b \theta (a' \theta e a) \gamma b') \in e a = b \theta (a' \theta f \theta e a)\], for some \(a' \in V^S_\theta (a)\) where \(b \theta (a' \theta e a) \gamma b' \in K_\gamma\) and \(a' \theta f \theta e a \in K_\theta\). Consequently \((a, b) \in \mathcal{K}\).

For any congruence \(\mathcal{P}\) on \((S, \Gamma)\) let \(\text{Ker} \mathcal{P} = \{ (\text{Ker} \mathcal{P})_\alpha : \alpha \in \Gamma \}\)
where \((\text{Ker} \mathcal{P})_\alpha = \{ x \in S : (e, x) \in \mathcal{P} \text{ for some } e \in E_\alpha \}\).
LEMMA 3.4. For any $K \in N$, $\text{Ker } \phi_K = K_w$.

PROOF. To prove that $\text{Ker } \phi_K = K_w$, we are to show that

$$(\text{Ker } \phi_K)_a = (K_w)_a$$

for all $a \in \Gamma$. For this let $x \in (\text{Ker } \phi_K)_a$ for some $a \in \Gamma$. Then $(e, x) \in \phi_K$ for some $e \in E_a$ that is $e \beta f = g \gamma x$ for some $\beta, \gamma \in \Gamma$, $f \in K_\beta$, $g \in K_\gamma$. So $g \gamma x \in K_a$ as $e \beta f \in K_a$. Thus $x \in (K_w)_a$.

Next let $x \in (K_w)_a$. Then $g \gamma x \in K_a$ for some $\gamma \in \Gamma$ and $g \in K_\gamma$. Now for some $e \in E_a$, $e \alpha (g \gamma x) = (e \alpha g) \gamma x$ where $g \gamma x \in K_a$ and $e \alpha g \in K_\gamma$. Thus $(e, x) \in \phi_K$. Consequently $x \in (\text{Ker } \phi_K)_a$.

So $(\text{Ker } \phi_K)_a = (K_w)_a$ for all $a \in \Gamma$. Thus $\text{Ker } \phi_K = K_w$.

Let K be a normal family and suppose $a' \gamma b' \in (K_w)_a$ for some $b' \in V_{\gamma}(b)$. Then $e \alpha a' \gamma b' \in K_\xi$ for some $a \in \Gamma$ and $e \in K_a$. Then for any $a' \in V_{\theta}^\xi(a)$, $a' \phi (e \alpha a' \gamma b') \xi_a \in K_\theta$ and $(a' \xi \phi a) \gamma b' \xi_a \theta a' \phi b = (a' \xi \phi a) \gamma b' \xi_a (a' \phi a) \phi b \in K_\phi$. Thus $a' \phi b \in (K_w)_\phi$. Conversely suppose $a' \phi b \in (K_w)_\phi$ for some $a' \in V_{\theta}^\xi(a)$. Then $f \beta (a' \phi b) \in K_\theta$ for some $\beta \in \Gamma$ and $f \in K_\beta$ and $a \beta (f \beta a' \phi b) \theta a' \in K_\phi$. Therefore for some $b' \in V_{\gamma}^\xi(b)$, $(a \beta \xi a' \phi b) \phi (a' \gamma b') = (a \beta \xi a' \phi b) \phi (a' \phi a) \gamma b' \in K_\xi$.

Therefore $a \gamma b' \in (K_w)_\xi$. Thus $a \gamma b' \in (K_w)_\xi$ for some (all) $b' \in V_{\gamma}^\xi(b)$ if and only if $a' \phi b \in (K_w)_\xi$ for some (all) $a' \in V_{\theta}^\xi(a)$.

Interchanging roles of a and b we see that $b \theta a' \in (K_w)_\xi$ for some (all) $a' \in V_{\theta}^\xi(a)$ if and only if $b' \xi a \in (K_w)_\gamma$ for some (all) $b' \in V_{\gamma}(b)$. Moreover, the symmetric property of ϕ_K shows that
THEOREM 3.5. For each \(K \in \mathbb{N} \), \((a, b) \in \mathcal{P}_K \) if and only if one of the following equivalent conditions hold.

(i) \(a \iff b \in (Kw)_a \) for some (all) \(b \in V_\gamma(b) \).

(ii) \(b \iff a \in (Kw)_a \) for some (all) \(b \in V_\gamma(b) \).

(iii) \(a \iff b \in (Kw)_a \) for some (all) \(a \in V_\gamma(a) \).

(iv) \(b \iff a \in (Kw)_a \) for some (all) \(a \in V_\gamma(a) \).

THEOREM 3.6. The mapping \(K \to \mathcal{P}_K = \{ (a, b) \in S \times S : a \iff b \in K \} \) is a one to one order preserving mapping from \(\mathbb{N} \), the collection of all closed normal families in \(\mathbb{N} \), onto the set of all \(\Gamma \)-group congruences on \((S, \Gamma) \).

PROOF. Let \(\mathcal{P} \) be a \(\Gamma \)-group congruence on \((S, \Gamma) \). Let us denote \(\ker \mathcal{P} \) by \(K \) and \((\ker \mathcal{P})_a \) by \(K_a \). Then \(K_a = \{ x \in S : (x, e) \in \mathcal{P} \text{ where } e \in E_a \} \). Then \(E_a \subseteq K_a \). Let \(a \in K_a \), \(b \in K_b \) then

\[(a, e) \in \mathcal{P} \text{ and } (b, f) \in \mathcal{P} \text{ where } e \in E_a \text{ and } f \in E_b \].

Now \(a \mathcal{P} b \mathcal{P} f = (a \mathcal{P}) a(b \mathcal{P}) = (e \mathcal{P}) a(f \mathcal{P}) = e \mathcal{P} \). Thus \(a \mathcal{P} b \mathcal{P} f \in \mathcal{P} \), where \(f \in E_b \). Thus \(a \mathcal{P} b \mathcal{P} K_b \). Similarly \(a \mathcal{P} b \mathcal{P} K_a \). Next let \(a' \in V_\beta(a) \) and \(c \in K_\gamma \). Then \((c, g) \in \mathcal{P} \text{ where } g \in E_\gamma \). Then

\[(a \mathcal{P} c \mathcal{P} a') \mathcal{P} = (a \mathcal{P}) a(c \mathcal{P}) \mathcal{P} (a' \mathcal{P}) = (a \mathcal{P}) a((g \mathcal{P}) \mathcal{P} (a' \mathcal{P})) = (a \mathcal{P}) a(a' \mathcal{P}) = (aa \mathcal{P} a') \mathcal{P} \]. Thus \((a \mathcal{P} c \mathcal{P} a', aa \mathcal{P} a') \in \mathcal{P} \text{ where } aa \mathcal{P} a' \in E_\beta \).
Hence $aa'yS' \in K_\beta$. Similarly $a'yca'a' \in K_\beta$. Therefore K is a normal family of subsets of S. Next $(Kw)_\gamma = \{x \in S : eax \in K_\gamma$ where $e \in K_\alpha$ for some $\alpha \in \Gamma\}$. Then $K_\gamma \subseteq (Kw)_\gamma$. To show $(Kw)_\gamma \subseteq K_\gamma$, let $x \in (Kw)_\gamma$. Then $eax \in K_\gamma$ for some $\alpha \in \Gamma$ and $e \in K_\alpha$. Consequently $(eax)_\gamma = g_\gamma$ where $g \in E_\gamma$. So $(e_\gamma a)(x_\gamma) = g_\gamma$ that is, $x_\gamma = g_\gamma$. Therefore $x \in K_\gamma$. Thus $(Kw)_\gamma \subseteq K_\gamma$. Therefore $K = Kw$ and so $K = \text{Ker} \rho \in \overline{N}$. Thus if ρ is a Γ-group congruence, then $\text{Ker} \rho = K \in \overline{N}$. We now prove that $\rho_K = \rho$. If $(a,b) \in \rho_K$ then $a'b' \in K_S$ for some $b' \in V_\gamma(b)$. Thus $(a'b', h) \in \rho$ for some $h \in E_\beta$ and $a_\phi = (a_\phi)(h'((b'_\phi b)'_\phi)) = (h'_\phi) \in (b'_\phi) = b'_\phi$. Thus $\rho_K \subseteq \rho$. Conversely if $(a,b) \in \rho$ and $b' \in V_\gamma(b)$, then $(a'b', b'yb') \in \rho$ where $b'yb' \in E_\beta$ and so $(a,b) \in \rho_K$. Therefore $\rho = \rho_K$. Thus from above and Lemma 3.4 for any $K \in \overline{N}$, $K \mapsto \rho_K$ is a one-to-one mapping from \overline{N} onto the set of all Γ-group congruences on (S,Γ). Also it is easy to see that $K \mapsto \rho_K$ is an order preserving mapping.

Let τ be a Γ-group congruence on (S,Γ). Theorem 3.6 implies that $\tau = \rho_K$, where $K = \text{Ker} \tau \in \overline{N}$. Thus each Γ-group congruence is of the form ρ_K for some $K \in \overline{N} \subseteq N$. Hence by Lemma 3.4 we have the following.

THEOREM 3.7. The least Γ-group congruence ρ on (S,Γ) is given
by \(\delta = \mathcal{P}_{U} \) and \(\text{Ker} \delta = U_w \).

THEOREM 3.8. For any \(\Gamma \)-group congruence \(\mathcal{P}_{K} \), with \(K \) in \(N \), on a regular \(\Gamma \)-semigroup the following are equivalent.

1. \((a, b) \in \mathcal{P}_{K}\).
2. \(\alpha \mu \gamma \beta' \in K_\delta \) for some \(x \in K_\mu \) (\(\mu \in \Gamma \)) and some (all) \(b' \in V_\gamma(b) \).
3. \(\alpha' \phi \gamma \mu b \in K_\theta \) for some \(x \in K_\mu \) (\(\mu \in \Gamma \)) and some (all) \(a' \in V_\theta(a) \).
4. \(\beta \mu \theta \alpha' \epsilon K_\phi \) for some \(x \in K_\mu \) (\(\mu \in \Gamma \)) and some (all) \(a' \in V_\phi(a) \).
5. \(b' \in V_\gamma a \in K_\gamma \) for some \(x \in K_\mu \) (\(\mu \in \Gamma \)) and some (all) \(b' \in V_\gamma(b) \).
6. \(\alpha \epsilon e = f \beta b \) for some \(\alpha, \beta \in \Gamma \) and some \(e \in K_\alpha, f \in K_\beta \).
7. \(\epsilon e a = b \beta f \) for some \(\alpha, \beta \in \Gamma \) and some \(e \in K_\alpha, f \in K_\beta \).
8. \(K_\beta \beta \alpha \epsilon K_\alpha \cap K_\beta \beta \beta \epsilon K_\alpha \neq \emptyset \) for some \(\alpha, \beta \in \Gamma \).

Proof. (ii) \(\Rightarrow \) (iii) Suppose \(\alpha \mu \gamma \beta' \in K_\delta \), for some \(x \in K_\mu \) and \(b' \in V_\gamma(b) \). Then for any \(a' \in V_\theta(a) \), \(a' \phi (\alpha \mu \gamma \beta') S b = (a' \phi a) \mu (x \gamma (b' \gamma b)) \in K_\theta \) as \(a' \phi a \in K_\theta \) and \(x \gamma b' \in K_\mu \).

(iii) \(\Rightarrow \) (vi) Let \(a' \phi \gamma \mu b \in K_\theta \) for some \(a' \in V_\theta(a) \) and \(x \in K_\mu \).

Then \(a \theta (a' \phi \gamma \mu b) = (a \theta a' \phi x) \mu b \) which is (vi) as \(a' \phi \gamma \mu b \in K_\theta \) and \(a \theta a' \phi x \in K_\mu \).

(vi) \(\Rightarrow \) (viii) Let \(a \epsilon e = f \beta b \) for some \(\alpha, \beta \in \Gamma \) and \(e \in K_\alpha, f \in K_\beta \).

Then we have \(f \beta \alpha \epsilon e = f \beta f \beta a \epsilon e \) implying \(K_\beta \beta \alpha \epsilon K_\alpha \cap K_\beta \beta \beta \epsilon K_\alpha \neq \emptyset \).

(viii) \(\Rightarrow \) (ii) Let \(K_\beta \beta \alpha \epsilon K_\alpha \cap K_\beta \beta \beta \epsilon K_\alpha \neq \emptyset \). Thus \(x \beta \alpha y = x_1 \beta \beta \alpha y_1 \) for some \(x, x_1 \in K_\beta, y, y_1 \in K_\alpha \). If \(a' \in V_\theta(a), b' \in V_\gamma(b) \). Then
a'σxβa / K_θ , (a'σxβa) ay / K_θ and we have, aθ(a'σxβa ay) γb' =
(aθa')σ(a'σxβa ay) γb' = (aθa')σx_1 β(bαγγ_1 γb') / K_θ
as bαγγ_1 γb' / K_θ , x_1 β(bαγγ_1 γb') / K_θ and aθa' / K_θ . Thus (ii),
(iii), (vi) and (viii) are equivalent. Interchanging the roles
of a and b we see that (iv), (v), (vii) and (viii) are equiva­
lent. Also (i) and (vi) are equivalent by Theorem 3.2. Thus
all the conditions (i) - (viii) are equivalent.

COROLLARY 3.9. Let \(\mathcal{G} \) denote the least \(\Gamma \)-group congruence on a
regular \(\Gamma \)-semigroup \((S, \Gamma)\). Then the following conditions are
equivalent.

(i) \((a, b) \in \mathcal{G}\)

(ii) \(auxy b' \in U_\mathcal{G}\) for some \(x \in U_\mu (\mu \in \Gamma)\) and some (all) \(b' \in V_\mathcal{G}(b)\).

(iii) \(a'\sigma x\beta b \in U_\mathcal{G}\) for some \(x \in U_\mu (\mu \in \Gamma)\) and some (all) \(a' \in V_\mathcal{G}(a)\).

(iv) \(buxy a' \in U_\mathcal{G}\) for some \(x \in U_\mu (\mu \in \Gamma)\) and some (all) \(a' \in V_\mathcal{G}(a)\).

(v) \(b' \in x^\alpha a \in V_\mathcal{G}\) for some \(x \in U_\mu (\mu \in \Gamma)\) and some (all) \(b' \in V_\mathcal{G}(b)\).

(vi) \(a\sigma a = f\beta b\) for some \(a, \beta \in \Gamma\) and \(e \in U_\alpha , f \in U_\beta\).

(vii) \(e\sigma a = b\beta f\) for some \(a, \beta \in \Gamma\) and \(e \in U_\alpha , f \in U_\beta\).

(viii) \(U_\beta b\sigma a U_\alpha \cap U_\beta b\sigma a U_\alpha \neq \emptyset\) for some \(a, \beta \in \Gamma\).
4. THE MAXIMUM IDEMPOTENT SEPARATING CONGRUENCE ON A REGULAR \(\Gamma \)-SEMIGROUP

In the discussion for \(\Gamma \)-group congruences on regular \(\Gamma \)-semigroups we see that a \(\Gamma \)-group congruence on a regular \(\Gamma \)-semigroup is such that all \(\alpha \)-idempotents \((\alpha \in \Gamma)\) is contained in a single congruence class. So just opposite to the idea of \(\Gamma \)-group congruence is the congruence in which no two \(\alpha \)-idempotents belong to the same congruence class. We define such a congruence on a regular \(\Gamma \)-semigroup as idempotent separating congruence. In this section we characterize the maximum idempotent separating congruence on a regular \(\Gamma \)-semigroup \([27]\). This actually generalises the work of John Meakin \([14]\) regarding the maximum idempotent separating congruence on a regular semigroup.

DEFINITION: A congruence \(\mathcal{P} \) on a \(\Gamma \)-semigroup \((S, \Gamma)\) is said to be idempotent separating if \(eae = e, faf = f \) belong to \(S \) and \((e, f) \in \mathcal{P} \) imply \(e = f \).

From the definition it follows that if \(\mathcal{P} \) is an idempotent separating congruence on a \(\Gamma \)-semigroup \((S, \Gamma)\) then \(\mathcal{P} \) is an idempotent separating congruence on each semigroup \(S_\alpha \), \(\alpha \in \Gamma \). But the following example shows that a congruence \(\mathcal{P} \) on a \(\Gamma \)-semigroup
(S, \Gamma) may be an idempotent separating congruence on some semi-
group S_\alpha, \alpha \in \Gamma, but may not be an idempotent separating con-
gruence for the \Gamma-semigroup (S, \Gamma). So it is necessary to
study idempotent separating congruences on a \Gamma-semigroup (S, \Gamma).

Example 4.1. Let S = \mathcal{J}/(6) = the set of all residue classes
modulo 6 = \{0, 1, 2, 3, 4, 5\} and \Gamma = \{1, \bar{3}\}. If we define
\mu : S \times \Gamma \times S \rightarrow S by (\bar{a}, \bar{b}, \bar{c})_\mu = \bar{a} \bar{b} \bar{c} = \bar{a} \bar{b} \bar{c} where \bar{a}, \bar{b}, \bar{c} \in S and
\bar{a} \in \Gamma. Then (S, \Gamma) is a \Gamma-semigroup. Furthermore (S, \Gamma) is a
regular \Gamma-semigroup. But S_\beta is not a regular semigroup where
\beta = \bar{3} as there is no p in S such that I\bar{3}p3I = I holds. Now we
see that 0, \bar{1}, \bar{3}, 4 are I-idempotents and \bar{0} and \bar{3} are 3-idempotents.
Let us define a binary relation \rho on S by (\bar{a}, \bar{b}) \in \rho if and only
if \bar{a} - \bar{b} = n where n is even. Then \rho is a congruence. Now in
S_\beta, where \beta = \bar{3}, 3 and \bar{0} are idempotents and \bar{3} - \bar{0} = \bar{3}. Thus \bar{3}
is not \rho-related to \bar{0}. Consequently \rho is an idempotent
separating congruence in S_\beta. But in S_\alpha, where \alpha = \bar{1}, (4, 0) \in \rho
and (\bar{3}, \bar{1}) \in \rho. Consequently \rho is not an idempotent separating
congruence in S_\alpha.

We define partial orders among \mathcal{L}, \mathcal{R} and \mathcal{J}-classes of a
\Gamma-semigroup (S, \Gamma) as follows: \mathcal{L}_a \leq \mathcal{L}_b if (a)_1 \subseteq (b)_1 ,
\mathcal{R}_a \leq \mathcal{R}_b if (a)_r \subseteq (b)_r and \mathcal{J}_a \leq \mathcal{J}_b if (a) \subseteq (b) .
[where \((a)_l = S \cap a \cup a\), \((a)_r = a \cap S \cup \{a\}, (a) = \{a\} \cup S \cap a \cap S\]. We now introduce the following notation: If in a \(\Gamma\)-semigroup \((S, \Gamma)\) \(a \in S\) then we define

\[EL(a) = \{e \in S : L_e \subseteq L_a \text{ and } (\exists \theta \in \Gamma)(e \theta e = e)\}\] and

\[ER(a) = \{e \in S : R_e \subseteq R_a \text{ and } (\exists \theta \in \Gamma)(e \theta e = e)\}.\]

If \((S, \Gamma)\) is a regular \(\Gamma\)-semigroup, then for any \(a \in S\), \(EL(a) \neq \emptyset\) and \(ER(a) \neq \emptyset\), also we note that if \((a, b) \in \mathcal{H}\) then \(EL(a) = EL(b)\) and \(ER(a) = ER(b)\). We can prove the following lemma easily.

Lemma 4.1. Let \((S, \Gamma)\) be a \(\Gamma\)-semigroup then \(\mathcal{R}\) is a left congruence and \(\mathcal{L}\) is a right congruence on \((S, \Gamma)\).

Lemma 4.2. Let \((S, \Gamma)\) be a regular \(\Gamma\)-semigroup and \(a, b\) be any two elements of \(S\). Then \(a \mathcal{R} b\) if and only if there exist \(a' \in V^\beta_\alpha(a)\) and \(b' \in V^\beta_\alpha(b)\) such that \(a' \beta a = b' \beta b\) and \(a \mathcal{L} a' = b \mathcal{L} b'\) for some \(\alpha, \beta \in \Gamma\).

(In fact we prove that if \((a, b) \in \mathcal{H}\) then for every \(a' \in V^\beta_\alpha(a)\) there exists \(b' \in V^\beta_\alpha(b)\) such that \(a \mathcal{L} a' = b \mathcal{L} b'\) and \(a' \beta a = b' \beta b\)).

Proof. Suppose \(a \mathcal{R} b\) and that \(a' \in V^\beta_\alpha(a)\). Then \(a' \beta a \mathcal{L} b \mathcal{R} a \mathcal{L} a'\).

Then by Theorem 2.9 there exists a unique \(b' \in V^\beta_\alpha(b)\) such that \(b' \beta b = a \mathcal{L} a'\) and \(b' \beta b = a' \beta a\). Conversely if for some \(a' \in V^\beta_\alpha(a)\), \(b' \in V^\beta_\alpha(b)\) we have \(a' \beta a = b' \beta b\) and \(a \mathcal{L} a' = b \mathcal{L} b'\) then \(a \mathcal{R} a' \beta a = b' \beta b \mathcal{R} b\) and \(a \mathcal{R} a' = b' \beta b \mathcal{L} b\). Hence \(a \mathcal{R} b\).
LEMMA 4.3. Let \(\rho \) be a congruence on a regular \(\Gamma \)-semigroup \((S, \Gamma)\). If \(a \rho \) is an \(a \)-idempotent in \((S/\rho , \Gamma)\) then there exists an \(a \)-idempotent \(e \) in \(S \) such that \(a \rho = e \rho \) and \(R_e \leq R_a \), \(L_e \leq L_a \).

PROOF. If \(a \rho \) is an \(a \)-idempotent in \((S/\rho , \Gamma)\), then \(a \rho = (a \rho) a(a \rho) = (aca) \rho \). So \((a, aca) \in \rho \). Let \(b \in V_\beta (aca) \).

Let \(e = a \beta b \gamma a \) then \(e \) is an \(a \)-idempotent in \((S, \Gamma)\). Also \((a, aca) \in \rho \) implies \((a \beta b \gamma a, (aca) \beta b \gamma a) \in \rho \) and \((aca) \beta b \gamma (aca) \in \rho \). That is \((e, aca) \in \rho \). Consequently \((e, a) \in \rho \). Thus \(e \rho = a \rho \). Now \((e)_r = e a s = a \beta b \gamma a \rho s \leq a \Gamma s = (a)_r \) implies \(R_e \leq R_a \). Similarly \(L_e \leq L_a \).

LEMMA 4.4. If \((S, \Gamma)\) is a regular \(\Gamma \)-semigroup then a congruence \(\rho \) on \((S, \Gamma)\) is idempotent separating if and only if \(\rho \subseteq \mathcal{H} \).

PROOF. Let \(\rho \subseteq \mathcal{H} \). Then \(\rho \) is idempotent separating because if \(e \rho = e \), \(f \rho = f \) and \((e, f) \in \rho \) then \((e, f) \in \mathcal{H} \). Then \(e \rho f \) and \(e \rho f \rho = f \rho \) and so \(S e \rho = S a \rho = a \rho s \). Consequently \(e = e \rho f = f \).

Conversely let \(\rho \) be an idempotent separating congruence. Let \((a, b) \in \rho \). Then for any \(a' \in V_\alpha ^\beta (a) \) where \(\alpha, \beta \in \Gamma \), we have \((aca', bca') \in \rho \). Therefore \((bca') \rho = (aca') \rho \) is a \(\beta \)-idempotent in \((S/\rho , \Gamma)\). Hence by Lemma 4.3 there exists a \(\beta \)-idempotent
e ∈ S such that e Φ = (baa') Φ and Ra ⊆ R_baa'. But then
e Φ = (aca') Φ implies that e = aca' (since Φ is an idempotent
separating congruence). Thus Ra = R_a = Re ⊆ R_baa' ∈ R_b.
Similarly we can prove that R_b ⊆ R_a. Thus a ∼ b. Similar
argument prove that a ∼ b. Consequently a ∼ b.

Now we give a characterisation of the maximum idempotent sepa­
rating congruence on a regular Γ-semigroup.

THEOREM 4.5. The maximum idempotent separating congruence on a
regular Γ-semigroup (S, Γ) is given by μ = \{(a, b) ∈ S x S :
there exist a, b ∈ Γ, a' ∈ VA(a), b' ∈ VA(b) such that aθa' =
bθb' for all e ∈ EL(a) U EL(b), a'βθa = b'βθb for all
fθf = f ∈ ER(a) U ER(b)\}.

PROOF. It is obvious that μ is reflexive and symmetric. We now
show that μ ∈ Υ. Let (a, b) ∈ μ and let a' ∈ VA(a), b' ∈ VA(b) be
such that the conditions given in the definition of μ are
satisfied. Now aca' ∈ R_a and aca' is a β-idempotent, so
a'βa = a'β(aca')βa = b'β(aca')βb = (b'βb)β(aca')βb
Hence aca' = a(a'βa)ca' = a(b'βb)ca' = b(a'βb)ca' = bca'βb =
(bb')β(aca')β(bb'). Hence (bb')β(aca') = aca' = (aca')β(bb').
As (a, b) ∈ μ implies that (b, a) ∈ μ, proceeding as above we can
show that (bb')β(aca') = bb' = (aca')β(bb'). Consequently
Therefore from (1) $a' \beta a = b' \beta (aca') \beta b = b' \beta (bcb') \beta b = b' \beta b$ and so by Lemma 4.2 $(a,b) \in J$. Thus $\mu \subseteq J$. We now prove that the relation μ is transitive. Let $(a,b) \in \mu$, $(b,c) \in \mu$.

Then $(a,b) \in J$, $(b,c) \in J$ and there exist $\alpha, \beta, \gamma, \epsilon \in \Gamma$ and $a' \in V^\alpha(a)$, $b' \in V^\beta(b)$, $b^* \in V^\delta(b)$, $c' \in V^\epsilon(c)$ such that $a \theta e a' = b \theta e b'$, $b \theta e c^* = c \theta e c^*$ for all $e \theta e = e \in EL(a) = EL(b) = EL(c)$ and $a' \beta \theta a' = b' \beta \theta b$, $b^* \epsilon \theta b = c^* \epsilon \theta c$ for all $f \epsilon \theta f = f \in ER(a)$ $= ER(b) = ER(c)$. Then $a \theta a' = b \theta b'$, $a' \beta a = b' \beta b$, $b \gamma c^* = c \gamma c^*$, $b^* \epsilon b = c^* \epsilon c$. Also as $(a,c) \in J$ by Lemma 4.2 there exist $a' \in V^\alpha(a)$, $c' \in V^\alpha(c)$ such that $a \theta a' = c \theta c'$, $a' \beta a = c' \beta c$, $a \gamma a' = c \gamma c'$, $a \epsilon a = c \epsilon c$. Then for each $e \theta e = e \in EL(a) = EL(b) = EL(c) = EL(a' \beta a) = EL(b' \beta b)$, we have $a \theta e a' = a \theta (e \theta a' \beta a) \gamma a' = (a \theta e a') \beta (a \gamma a') = (b \theta e b') \beta (b \gamma b') = b \theta (e \theta b' \beta b) \gamma b' = b \theta e b' = c \theta e c'$. Also for each $f \theta f = f \in ER(a) = ER(b) = ER(c) = ER(a \theta a') = ER(b \theta b')$ we have $a^* \epsilon \theta a^* = a^* \epsilon (a \theta a' \beta f) \theta a = (a^* \epsilon a) \alpha (a' \beta \theta a) = (b^* \epsilon b) \alpha (b' \beta \theta b) = b^* \epsilon (b \epsilon b' \beta f) \theta b = b^* \epsilon \theta b = c^* \epsilon \theta c$. Hence $(a,c) \in \mu$ and so μ is transitive. Next we show that if $(a,b) \in \mu$ then $(c \gamma a, c \gamma b) \in J$ for each $c \in S$, $\gamma \in \Gamma$. Let $(a,b) \in \mu$, $c \in S$, $\gamma \in \Gamma$ and $a' \in V^\alpha(a)$, $b' \in V^\beta(b)$ be such that the conditions in the definition of μ are satisfied. Now $(a,b) \in \mu \subseteq J \subseteq R$ and R is a left congruence (by Lemma 4.1) so $(c \gamma a, c \gamma b) \in R$.
Now \(c^\lambda a = (c^\lambda a) \triangleleft (c^\lambda a)' \ \mu \ (c^\lambda a) \) (where \((c^\lambda a)' \in V^\mu(c^\lambda a) \))

\[
= (c^\lambda a) \sigma(a' \beta a) \triangleleft (c^\lambda a)' \ \mu \ (c^\lambda a) \sigma(a' \beta a)
\]

\[
= (c^\lambda a) \sigma(b' \beta b) \triangleleft (c^\lambda a)' \ \mu \ (c^\lambda a) \ \sigma(b' \beta b)
\]

\[
= (c^\lambda a \sigma b') \beta[b \in ((c^\lambda a)' \ \mu \ (c^\lambda a)) \sigma b']
\]

\[
= (c^\lambda a \sigma b') \beta[a \in ((c^\lambda a)' \ \mu \ (c^\lambda a)) \sigma a']b'
\]

\[
= ... \in EL(a) = EL(b).
\]

\[
= (c^\lambda a) \sigma(b' \beta a) \triangleleft (c^\lambda a)' \ \mu \ (c^\lambda a) \ \sigma(a' \beta b)
\]

\[
= (c^\lambda a) \sigma(b' \beta a) \triangleleft (c^\lambda a)' \ \mu \ c^\lambda (a \sigma a') \ \beta b
\]

\[
= (c^\lambda a) \sigma(b' \beta a) \triangleleft (c^\lambda a)' \ \mu \ c^\lambda (b \sigma b') \ \beta b.
\]

\[
\]

So \(L_{c^\lambda a} \subseteq L_{c^\lambda b} \). Similarly \(L_{c^\lambda b} \subseteq L_{c^\lambda a} \) and thus \((c^\lambda a, c^\lambda b) \in \mathcal{L} \).

It follows that \((c^\lambda a, c^\lambda b) \in \mathcal{F} \). Therefore by Lemma 4.2 if \((c^\lambda a)' \in V^\mu(c^\lambda a), \) then there exists \((c^\lambda b)' \in V^\mu(c^\lambda b) \) such that \((c^\lambda a)' \mathcal{F} (c^\lambda b)' \). We now prove that \((c^\lambda a, c^\lambda b) \in \mu \). Let \((a, b) \in \mu, \ c \in S \) and \(\gamma \in \mathcal{F} \). Let \(e^\theta = e^\epsilon \in EL(c^\lambda a) = EL(c^\lambda b) \). We show that if \((c^\lambda a)' \in V^\mu(c^\lambda a) \) then \((c^\lambda a) \\theta e \subseteq (c^\lambda a)' = (c^\lambda b) \\theta e \subseteq (c^\lambda b)' \).

Let \(a' \) and \(b' \) denote the \((\alpha, \beta) \) inverses of \(a \) and \(b \) respectively satisfying conditions given in the definition of \(\mu \). Now \(e^\epsilon \in EL(c^\lambda a) = EL((c^\lambda a)' \ \mu \ (c^\lambda a)) \) and so \(e \in (c^\lambda a)' \ \mu \ (c^\lambda a) = e \).

Also \(L(c^\lambda a)' \ \mu \ (c^\lambda a) \leq L_{a' \beta a} = L_a \), so \(e(a' \beta a) = e \) and \(L_e \subseteq L_a \).
Hence \((c\gamma a) \in (c\gamma a)\ ' = c\gamma a \theta \alpha (a' \beta a) \subseteq (c\gamma a)\ ' \)
\[= c\gamma (a \theta \alpha a') \beta a \subseteq (c\gamma a)\ ' \]
\[= c\gamma (b \theta \alpha b') \beta a \subseteq (c\gamma a)\ ' \]
\[= (c\gamma b) \theta \alpha \beta (c\gamma a) \beta (c\gamma a) \subseteq (c\gamma a) \oplus (c\gamma b) \]
\[= (c\gamma b) \theta \alpha \beta (c\gamma a) \beta (c\gamma a) \subseteq (c\gamma a) \oplus (c\gamma b) \]
\[= (c\gamma b) \theta \alpha \beta (c\gamma a) \beta (c\gamma a) \subseteq (c\gamma a) \oplus (c\gamma b) \]
\[= (c\gamma b) \theta \alpha \beta (c\gamma a) \beta (c\gamma a) \subseteq (c\gamma a) \oplus (c\gamma b) \]

(since \(L(c\gamma a) \mu (c\gamma a) \leq L_B = I_B \))
\[= (c\gamma b) \theta \alpha \beta (c\gamma a) \beta (c\gamma a) \subseteq (c\gamma a) \oplus (c\gamma b) \]
\[= (c\gamma b) \theta \alpha \beta (c\gamma a) \beta (c\gamma a) \subseteq (c\gamma a) \oplus (c\gamma b) \]
\[= (c\gamma b) \theta \alpha \beta (c\gamma a) \beta (c\gamma a) \subseteq (c\gamma a) \oplus (c\gamma b) \]

Now let \(f \theta f = f \in ER(c\gamma a) = ER(c\gamma b) = ER[(c\gamma a) \subseteq (c\gamma a) \ '] \).

Then \((c\gamma a) \subseteq (c\gamma a) \ ' \mu f = f \) and it follows that \((c\gamma a) \ ' \mu f \theta (c\gamma a) \)
is a \(\subseteq \)-idempotent and \((c\gamma a) \ ' \mu f \theta (c\gamma a) \in EL(a) = EL(b) \). Hence
\[(c\gamma a) \mu f \theta (c\gamma a) = (c\gamma a) \ ' \mu (c\gamma a) \subseteq (c\gamma a) \ ' \mu f \theta (c\gamma a) \subseteq (c\gamma a) \ ' \mu (c\gamma a) \]
\[= (c\gamma b) \ ' \mu (c\gamma b) \subseteq [(c\gamma a) \ ' \mu f \theta (c\gamma a)] \subseteq (c\gamma b) \ ' \mu (c\gamma b) \]
\[= (c\gamma b) \ ' \mu (c\gamma b) \subseteq [(c\gamma a) \ ' \mu f \theta (c\gamma a)] \subseteq (c\gamma b) \ ' \mu (c\gamma b) \]
\[= (c\gamma b) \ ' \mu (c\gamma b) \subseteq [(c\gamma a) \ ' \mu f \theta (c\gamma a)] \subseteq (c\gamma b) \ ' \mu (c\gamma b) \]
\[= (c\gamma b) \ ' \mu (c\gamma b) \subseteq [(c\gamma a) \ ' \mu f \theta (c\gamma a)] \subseteq (c\gamma b) \ ' \mu (c\gamma b) \]
\[= (c\gamma b) \ ' \mu (c\gamma b) \subseteq [(c\gamma a) \ ' \mu f \theta (c\gamma a)] \subseteq (c\gamma b) \ ' \mu (c\gamma b) \]
Thus \((c^a, c/b) \in \mu \). Similarly we can prove that \((a, b) \in \mu \)
implies \((a^c, b^c) \in \mu \) for all \(c \in \Gamma \) and \(c \in S \). Consequently \(\mu \)
is a congruence. Since \(\mu \subseteq \mathcal{H} \), \(\mu \) is an idempotent separating
congruence by Lemma 4.4.

Finally let \(\mathcal{F} \) be any idempotent separating congruence on \((S, \Gamma')\)
and let \((a,b) \in \mathcal{F} \). Then \((a,b) \in \mathcal{H} \) (by Lemma 4.4) and so by
Lemma 4.2 there exist \(a' \in \gamma^a(a), b' \in \gamma^b(b) \) for some \(a, b \in \Gamma \)
such that \(a^a a' = b^b b' \), \(a^b a = b^b b' \).

Let \(e e e = e \in EL(a) = EL(a^a a) = EL(b^b b) = EL(b) \).

Then \(e a' a a' = e \) and \((a e e a') \beta(a e e a') = a \theta(e a' a a') \theta e e a' =
\theta a e e a' = a e e a' \). Thus \(a e e a' \) is a \(\beta \)-idempotent. Similarly
\(b e e a' \) is also a \(\beta \)-idempotent of \((S, \Gamma')\). Again \(b' = b^b b' =
b^b b a a' \) and \(a' = a^a a a' = b^b b a a' \). But \((b^b b a a', b^b b a a') \in \mathcal{F} \)
impliciting thereby that \((a', b') \in \mathcal{F} \). Hence \((a e e a', b e e a') \in \mathcal{F} \).

But \(a e e a' \) and \(b e e a' \) are both \(\beta \)-idempotents and \(\mathcal{F} \) is an idempotent
separating congruence so \(a e e a' = b e e a' \). Similarly we can prove
that \(a^a a a' = b^b b b' \) for each \(a \in \mathcal{F} \). Thus \(a, b \in \mu \) which in turn implies that \(\mathcal{F} \subseteq \mu \). Consequently \(\mu \) is the
maximum idempotent separating congruence on \((S, \Gamma')\).