In a world grown accustomed to specialisms and specialists, we can no longer use comprehensive phrases such as the 'Philosophy of Geography' to describe our discipline. Yet for purposes of planning and organisation, we must formulate boundaries to this field of science provided we understand that these boundaries are artificial and, to some extent, unreal. Geography then becomes the 'Philosophy of Place' or the pursuit of wisdom with respect to 'Place'.

The pursuit of wisdom with respect to 'Place' is based on certain innate tendencies in the human mind. In some degree, human beings are geographers and very often explorers by nature. There is a fundamental urge in men to go somewhere and discover what is there. Whether it is called desire for knowledge or mere curiosity, this impulse is almost universal. It might be called instinctive since it is certainly shared by animals, as well. However, human beings have gone a step farther in that they have the powers of narrating these adventures. The broad substratum of geography is therefore instinctive: a desire to acquire a sense of 'Place'.

The innate tendencies on which the pursuit of wisdom with respect to 'Place' is based are really quite primitive ones, and, at the risk of being historical rather than geographical, we have reviewed the steps how man from pre-historic times has pursued that wisdom, or in other words, we have already sketched the evolution of geography through the Ages. (Vide Chapter I,...The Evolution of geographical knowledge)
It is not surprising that the word 'geography' meant different things in different ages and that in essentials or outlook there has not been much advancement beyond the stage reached with the flying start that was given by the Greeks. More potent, however, than the direct effects of environmental conditions on the evolution of geographical ideas has been the influence of the general level of culture and intellectual life. The character of geographical thought in different countries and at different ages illustrates in a striking manner the outstanding qualities of contemporary or national thought.

As early as the fourth century, B.C., astronomy, a science of close affinity to cosmogony was well organized in Babylonia and Egypt. The celestial equator was divided into 360 degrees. The signs of the zodiac were mapped for the first time and the length of the solar year computed. The Egyptians and Phoenicians worked on similar lines, the latter being famous traders. Similarly, the sphericity of the earth was recognized by the Indians and Persians.

Ancient Times: We already know that the Greeks were the first to accumulate facts bearing on geography and to record them in such a way as to render them useful to contemporaries, and instructive to future generations. The national intellect of the Greeks especially qualified them for geographical investigation. Their comprehensiveness of mind was suited to a subject which embraces a wide area of knowledge and which imparted to it a scientific character. Hence, from a very early period, the Greeks began recording the information gathered by their traders, and made this information the
basis for enquiry into the origin and constitution of the universe. The versatility of their intellect prevented them from confining themselves to one side of the study, and led them to regard it from several points of view.

So the study of the universe among the Greeks when once started was continuously progressive. It was natural that different aspects of the subject should attract attention at different times since in one age greater facilities were offered for the accumulation of materials, while in another there was a tendency to speculate on the facts thus obtained and to start new theories on the larger scientific questions involved. This was the commencement of a School of Philosophy which formed a link between the study of the earth at large and the detailed investigation of physical phenomena.

Like their predecessors, the scientific geography of the Greeks was speculative, theoretical, experimental. There were instances of the type of scientific deduction of which the Greeks were capable. Their acuteness of observation caused them to notice the peculiarities of the countries which they visited, and of the objects which they met within them. These they learnt to compare with one another and to speculate on their resemblances.

The Greeks were philosophical as well as practical geographers. They succeeded in taking geography beyond the descriptive stage, a feat that is now being repeated, about two thousand years later. They were able to see farther than the bare facts of 'Place', and to embark on deductions,
correlations, and useful analogies. They were never satisfied with mere lists of bays, capes and rivers, exports and imports, as were geographers of a century or less. Theirs was the Golden Age of just as much of geography just as it was of Philosophy.

The first school to contribute to the Philosophy of Geography was the Ionian School, founded by Thales of Miletus. Under this name are included a number of philosophers of the sixth and fifth centuries, B.C. They all sought to explain the material universe as given in sensible perception. Their speculations and explanations were in terms of matter, movement, force. The successors of Thales were Anaximander and Anaximenes who also sought for a primal substance of things. But the Ionian view of the universe was not constant and this led to extraordinary speculative activity including the possibility of there being an infinite number of worlds.

With the later Ionian philosophers came the desire to travel as a necessary preparation of any groundwork of exact knowledge or for philosophical speculation. Among them was Pythagoras, a kind of philosophical revivalist, and founder of the school, a moral brotherhood, named after him. To this school, is attributed the view of a spherical earth not upon observation but rather upon a numerical symbolism. At a later period, this school of thought evolved the rotation of the earth about its axis.

Towards the end of the sixth century, B.C., there came into existence another Greek school of Philosophy, known as the Eleatic School whose founder is more correctly regarded as Parmenides. While Pythagoras and his immediate followers were the first to introduce among the Greeks a cosmical philosophy somewhat more approaching to the truth, Parmenides and his followers of the Eleatic School, held that same doctrine. Among the Ionian philosophers,
however, the primitive belief in the flatness of the earth continued to maintain its ground to a comparatively late period.

Another school of Greek philosophers, founded at the close of the fourth century, B.C., by Zeno of Citium, near Athens, and which filled men's imaginations, and exerted a wider and more active influence upon the ancient world at some of the busiest and most important times in all history, was that of the Stoics. Posidonius, a philosopher of this school, determined the circumference of the earth independently of that of Eratosthenes and arrived at a widely different result. His method, however, like that of his predecessor, was scientific and sound in theory.

About the close of the fifth century, B.C., chiefly as a result of their victory over the Persians, the Greeks experienced, among other things, an increased desire for knowledge as a social and political aid, and possibly as a means to a new orientation after the shock to traditional beliefs and speculations. True, that the speculations of the philosophers that succeeded Thales were crude especially in regard to the nature and movements of the heavenly bodies and their relations with the earth. There had been too many conflicting doctrines and these speculations on the nature of the world had little practical influence through most of the period. But it was certainly not a period of stagnation. It was a more advanced condition of scientific speculation, and so this period has been called the Golden Age of the Greeks.

The general demand for knowledge naturally produced a supply of popular
teachers, and, the Sophists, the new professors of culture, discussed most subjects freely, among others, the contrast of Nature and Custom. But they neglected Physics as both unprofitable and indiscreet, and geographic thought shared in the prejudice against physics. Speculation about unknown parts was disliked, and attempts to measure and map the whole earth were regarded as smoothing absurd and frivolous. Both Socrates and his greatest disciple, Plato had a positive contempt for observation, upon which natural science rests. Both felt that it was not man's business to understand Nature but rather to understand and make the best of himself. Since Plato's philosophy was somewhat ethical, intellectual, and mystical, it did not take him very far in the sphere of geographical thinking but as a result of discussions contrasting Nature and Custom, they were led to correlate Man and Nature, when for example, Plato blamed the sea for its influence upon men making them unfriendly and faithless towards their fellow citizens and neighbouring states.

Herodotus, primarily an historian, but one with a full sense of the value of geographical setting, adopted the theory of a spherical earth. But he criticized and ridiculed the circular outline of the world which he held to be longer from east to west than it was broad from north to south. Beyond the limits of his personal travels, he applied the characteristic-
cally Greek theory of symmetry to complete outlines of rivers and lands, analogous to those which had been explored through unknown to him. Symmetry was, in fact, the first geographical theory and the effect of
Aristotle is in some ways the most important philosopher of ancient times. His writings contain contributions to all branches of knowledge though he has been considered the least successful in that of geography. He left no specifically geographical work though he was more successful in accumulating geographical facts than interpreting them. However, he must be given the distinction of being included among the founders of scientific geography. He demonstrated the sphericity of the earth by three arguments: (a) that the earth must be spherical, because of the tendency of matter to fall together toward a common centre, (b) that only a sphere could always throw a circular shadow on the moon during an eclipse, and (c), that the shifting of the horizon and the appearance of new constellations, or the disappearance of familiar stars, as one travelled from north to south, could only be explained on the hypothesis that the earth was a sphere.

Aristotle placed the earth in the centre of the universe and supposed it to be stationary, while the other heavenly bodies revolved round it. He formed a comprehensive theory on the variations of climate with latitude and season. In short, the philosophy of science in general, and of geography in particular, became the application of a strictly scientific method to establish the principles in accordance with which the investigation should be pursued. He sought for final causes and deduced so much at the cost of observation that the result is a travesty of science.
The methods of investigation which had recently been introduced by the philosophy of Aristotle were at hand to prevent waste of labour which would have arisen from ill-directed speculation. The spirit of enquiry which was characteristic of the Greeks spread rapidly and widely, and found an ample field on which to exercise itself in making new observations and discoveries. But as the focus of power gradually passed westward to the Romans and the Carthaginians, the inner light of Greek philosophy faded. The philosophy of geography was dimmed by the motive of profit and conquest. Certainly, there were still famous Greeks trying to show the true light to the Romans but far from being the Philosophy of 'Place' that the Greeks tended to produce, geography became a military treatise.

Apart from a few men like Alexander the Great whose campaigns were of the nature of geographical exploration under arms, and who was influenced by his instructor, Aristotle, resulting in the love of knowledge and scientific enquiry, there appeared, about the second century, B.C., a shift from the cosmical and theoretical side of the subject, and a bias toward the chorographical and topographical side. Geography thus became essentially practical and descriptive. Even the regular and systematic character of the subject since Eratosthenes, however imperfectly, came to be based, however imperfectly, upon fixed scientific principles.

About the same time as the military operations of the Romans, there appeared many written records by historians describing the frontier wars and
other accounts of very various quality. The first and by far the most comprehensive and interesting is Strabo's 'Geography', a great repository of information concerning the various countries of the inhabited world, as known at the beginning of the Christian era. It is an historical geography, and Strabo's philosophical and political opinions make themselves felt from time to time in the course of his work. In philosophy, it is somewhat surprising he was himself a Stoic. The conspicuous merit of his work 'Geography' is comprehensiveness aimed at bringing together and exhibiting in a readable form all that it was important to know about the different countries of the earth and their inhabitants. And so it is unique in history and antiquity. In it the modifying power of external nature over the history of man is traced. This is the most original feature in Strabo's work and thus justifies it the title of the 'Philosophy of Geography', which has been applied to it.

Another writer of the same period following Strabo, was Ptolemy who concentrated in his writings the final outcome of all Greek geographical learning, and passed it across the 'gulf' of the Middle Ages by the hands of the Arabs, to form the starting point of the science in modern times. His work was mainly cartographical in its aim, and theory was, as far as possible, excluded. Ptolemy used the word 'geography' to signify the description of the known earth on mathematical principles, while 'chorography' signified the fuller description of a particular region, and 'topography' the very detailed description of a smaller locality. However, Ptolemy's geography was known and constantly referred to by the Arabs who even wrote
geographical treatises along the same lines as that of Ptolemy.

The Middle Ages: The Middle Ages saw geographical knowledge die out in Christendom, and early medieval geography was dominated by Christian theology, based largely on scriptural exegeses. It was a dreary period as far as geography was concerned because there was no intellectual geography nor any open-minded explorers. So the subject was not much more than a vague vague background for historical and doctrinal teaching. The verbal interpretation of the scriptures even led some Church Fathers to denounce the spherical theory of the earth as heretical. And, as all learning was confined to the Church, at that time, Greek science gave place to primitive ignorance.

Later, with the victory of Christianity, there began a new motive for travel, an urge to visit the scenes of the Bible story, and also the Egyptian desert, and other places recently made famous by their hermits and monks. And so, with the Crusades, the eastern horizon was opened up beyond the Euphrates, for the first time since Alexander the Great.

As the facilities for travel increased, commerce began to revive in Latin kingdoms, and the countries bordering the Mediterranean Sea. Arabic enterprise also began to extend its commercial relations far beyond the limits of Ptolemy's world, which included India, Farther India and China, and Africa, down the eastern coasts below the Equator.

While the voyages of the Arabs in the Indian Ocean added nothing constructive to the science of geography, they disseminated knowledge of their
own most interesting lands, and of conditions of human environment which were unique, and they inculcated a new spirit of adventure. Above all, they prepared the way for the re-acceptance of Ptolemy’s ideas even among churchmen. However, Arab contributions to geographical knowledge and philosophy were on the same lines as those of the Greeks, mathematical calculations, reports of travellers, itineraries, etc., usually leavened with Indian and Persian work and theory.

The Middle Ages were barren except for the Arabs. During this period, there came forth very many grand adventurers who were not primarily geographers though they contributed to geographical knowledge. They were men of action rather than of philosophy. However, the old arguments of Aristotle and the old measurements of Ptolemy, were used by Columbus and Toscanelli in urging a westward voyage to India. But not until the voyage of Magellan did modern geography begin to advance. Discovery was outrunning theory, and the rush of new facts made Ptolemy practically obsolete in a generation. In fact, there was a sudden, vast, unwieldy, expansion of knowledge carried out entirely by sea. Geography became exploration acquiring an emphasis that was to endure for at least three hundred years. Few of these explorers were honest seekers after knowledge, and exploration became synonymous with exploitation. The search for gold became the prime motive of any expedition, far more fundamental than curiosity.

With more and more discovery, came the colonization of countries, and geography had once more developed and broadened into something approaching the standard of the early Greeks. Technically, it was much superior
being helped in particular, by the invention of printing. But geographers were still apt to be satisfied with description, and rarely entered into the fields of philosophy.

In the meantime, the rapidly accumulating store of facts of the sixteenth and seventeenth centuries were being put together by Peter Apian, Sebastian Munster, Bernard Varenius and others, and this quick construction of a whole new world of fact, was instrumental in releasing a motive power of research. The nature of things, rather than abstract or metaphysical principles became the touchstone of enquiry. Thus empirical fact-gathering became an indispensable fore-running condition of a new outlook upon the world, of a new attempt which blossomed in the subsequent centuries, to provide a more satisfactory, more realistic, frame of reference for both life and its physical setting. Practical affairs were liberally interwoven with discovery and rationality, in this time of a rapidly expanding universe of mind. In other words, the new facts of geography were the subject of original study by philosophers and by practical men without reference to classical traditions.

Apian's *Cosmographia*, in its original form based the whole science of geography on mathematics and measurement. He followed Ptolemy closely, enlarging on his distinction between geography and chorography. Munster, on the other hand, in his *Cosmographia Universalis*, followed the model of Strabo and described the world according to its political divisions. The bulk of the book dealt with human and political geography on a *Regional Basis*.
But perhaps a much more important work in the history of geographical method, from the philosophical standpoint, is the work of Bernhard Varenius when, in his book, the 'Geographia Generalis', he dealt with the philosophy of the earth and its place in the universe. Varenius (1622-1650) wrote the first general physical geography in a very modern way, using the causal relation and the comparative method. It might be mentioned here that Varenius, in the preparation of this work, was hindered by lack of material. Yet, the ideas lying behind the book were far in advance of the knowledge of his time. This system of geography founded a new era, and the book was the unchallenged standard for more than a century.

A few years before the publication of Varenius's 'Geographia Generalis', there appeared two other works, one by Cluver and the other by Carpenter. Cluver defined geography as the description of the whole earth, so far as it was then known. It was distinguished from cosmography by dealing with the earth alone, not with the universe, and from chorography and topography by dealing with the whole earth, not with a country or place.

Carpenter, who based his work on the principles of Ptolemy, divided geography into the 'Spherical Part', or that for the study of which mathematics alone is required, and the 'Topical Part', or the description of the physical relations of parts of the earth's surface, preferring this division to that favoured by the ancient geographers into 'general' and 'special'.
The first half of the eighteenth century brought a kind of 'revolution' in the philosophical thinking. This revolution was associated with thinkers like Montesquieu, Voltaire, and Rousseau. These three great thinkers were affecting a change in outlook which, slowly but decisively, had a bearing on the development of the human sciences through such works as 'Encyclopaedia', and others. In their attack on the abuses of the 'ancien regime', the conception of a static authoritarian system of society rooted in the past, was rejected. Each society was to be studied as the product of its own environment and history, in a world operating under the rule of natural laws. Statesmen were to understand these laws so that they might remould society in the interests of the sovereign people. It was rational for these philosophers in so doing to be led to consider the role of the geographical environment.

It was Montesquieu who philosophized upon environmentalism in his 'Espirit des Lois'. Rousseau, though not generally regarded as a geographer, has some interesting observations on how environment exercises a stimulus on primitive man. Newton contributed to the philosophy of geography by enunciating the 'Law of Gravity' and 'orbital motion'.

An important figure in eighteenth century geographical thought was the philosopher, Emmanuel Kant, who actually lectured in physical geography at the University of Konigsberg from 1756 to 1796. His interest in physical geography was not stimulated by actual experience of the variety of Nature in different parts of the earth, but through his philosophical
Kant's contribution to geography consists in his definition of the nature of the discipline in the introduction to his lectures where he describes so completely the scope of geography, that it has affected directly or indirectly all succeeding methodological discussion.

Knowledge, according to Kant, is obtained either by the exercise of pure reason or through the senses. Sense perceptions are of two kinds: (a) those perceived by the inner senses, and (b) those perceived by the outer senses. Together, they furnish the whole of man's empirical knowledge of the world. The world, as perceived by the inner senses, is 'Soul' or 'Man'. And as perceived by the outer senses is 'Nature'. According to Kant, Anthropology (modern psychology) studies the Soul or Man. Physical geography studies Nature and is thus the first part of knowledge of the world, and the essential preliminary for understanding our perceptions of the world.

Empirical knowledge can be classified in two ways, according to a concept or according to distribution in time and space. Classification according to concepts is a system of Nature; that according to time and space is a physical classification, and gives us a geographical description of Nature which considers things according to the place in which they occur on the earth.

Kant is also of the opinion that history and geography may be called a description.
and that history is a record of events which follow one another in time while geography is a report of the phenomena that occur next to each other. Together, they comprise the whole of man's perceptions, that is, 'Empirical Knowledge'.

Finally, Kant decides that geography has existed at all periods and is the sub-structure of history, for events must always have occurred in a certain setting.

It must be interesting to note here that Kant's 'Introduction to Physical Geography', is more important than his lectures, from the point of view of the philosophy of the subject. In the former, he refers to the interaction of man and environment but does not expand the theme. In the same way, he points out the necessity of studying the variations of Nature that give each land individuality, but makes no attempt to do so in the regional section. In other words, Kant presented an outline of the division of scientific knowledge in which the position of geography is made logically clear. In his view, the human element, was an integral part of the subject matter of geography.

Geography appealed to Kant as a valuable educational discipline, the joint foundation with anthropology of that 'knowledge of the world' which was the result of reason and experience. According to him, the description of a single place on the earth is called 'topography' while 'chorography' is the description of a region and its characteristics, and finally, 'geography' is the description of the whole world.
In the second half of the eighteenth century, however, facts of all kinds bearing on the earth's surface and its life were accumulating with increasing rapidity. These facts provided ample material for the speculations of scientist and philosopher. The period, in many respects, was one of creative epochs in Western civilization. Under the impact of advances in many spheres of thought, the study of geography made notable progress more particularly in Germany where the ideas of the French philosophers met with a ready response.

Springing largely from the teachings of Rousseau, there was an enthusiasm for Nature and for the beauties of natural scenery, and thus for rural excursions. This led to the inclination to study and to trace out the features of the landscape, and to describe the rural scene in simple, accurate style. The most powerful impulses were more general in character: the spirit of free enquiry, the belief in the unity of nature in all its manifestations, and the search for the coordinating principle. The impulses which acted powerfully on the age through the works of Hegel, Goethe, and Schiller, Goethe's came very close to the theory of evolution in his biological researches. In other words, while modern geography, on the eve of the nineteenth century, was developing along the lines of science with the accumulation of data, bringing about the slow growth of a true picture of the world, as regards geographic thought, this new world was being viewed from a totally different standpoint, thanks to the evolution of philosophy inaugurated by a group of French thinkers.
With the beginning of the nineteenth century, there was vigorous activity in various aspects of geographical knowledge in the collection of relevant data by explorers, arrangement, synthesis, and correlation by scientists. With these came the gradual refinement of the concept of the evolution of the mutual inter-dependence of man and his environment and the establishment of a definite philosophy of geography.

With the expansion of knowledge and the growth of new daughter sciences, which formerly lay within its sphere, geography which formerly originally was the study of all terrestrial phenomena, began narrowing down its own field, and in the more philosophical turn of thought of the eighteenth and nineteenth centuries, it became a means of obtaining a point of view with respect to the earth and humanity as a whole. The first important contribution to this point of view was made by one who was of a more sceptical turn of mind, and a close student of the natural world. Alexander von Humboldt, the founder of modern geography. As a result of his observations from the numerous journeys he made, and the impulse given to the study of natural history, he strove to build up a rational description of the universe, and in his approach to this task, he was fundamentally influenced by the philosophical, scientific, and literary ferment of the late eighteenth century.

Humboldt advanced the theory of geography mainly by his insistence on the great principle of the unity of nature. His general standpoint is set out in his *Cosmos* and other works. Influenced by contemporary idealist philosophy, he proposed to demonstrate that the forms of the land exercise
a directive and determining influence on climate, plant life, animal life, and on man himself... to relate cause and effect, and to trace out the inter-play of natural laws throughout the universe. The idea was not new, for Kant himself had given it full expression, though it was brought to fruition by Darwin and others. This gave new life to the scientific spirit and resulted, in particular, in the introduction of the causal as opposed to the teleological interpretation of geographical phenomena. And Humboldt's concrete illustrations and the remarkable power of his personality enabled him to enforce these principles with immediate and lasting effect. It is interesting to note here that though opinions have since differed on the scope of the subject, this concept of geography as a study of the 'inter-relatedness of things' has remained fundamental.

Humboldt's philosophical views find repeated expression in his scientific writings. Geography was not for Humboldt a field studied as an end in itself, but rather as a means of comprehending 'the harmonious unity of the cosmos as a 'Living whole', 'a unity in multiplicity.' An important factor in the evolution of Humboldt's thoughts was his close personal relationship with Goethe. With him and with the entire generation of the 'Romanticists', of his day, in the widest sense, Humboldt shared the idea of an organic coherence of all phenomena. This was a common characteristic of Humboldt, and his contemporary and fellow country-man, Ritter, who together are considered the co-founders of modern geography.
Generally associated with his contemporary and fellow-German, Ritter followed similar methods as Humboldt but formed his ideas independently. He extended and disseminated the same views as Humboldt, and in his 'Comparative Geography' laid stress on the importance of forming conclusions not from the study of one region by itself, but from the comparison of the phenomena of many places. In his general approach to the subject, he professed to proceed from observation to observation. Combinations of these produced his 'units' which foreshadowed the 'Regions' of modern geography.

Ritter was an ardent enthusiast for the moral and political ideas of his day. He was much influenced by the idealistic theories of the state propounded by the German philosopher, Hegel. Later, when religious element was cut out, such views led to pure 'Determinism', that is, the domination of man by his geographical environment. With qualifications, therefore, Ritter may be regarded as a geographical 'determinist'. His teleological views contributed to geographical thought. He showed how by correlation of position, physical features, climate and natural resources, an understanding of the individuality of a geographical area could be built up. He made geography a study of the world both as a whole and as a group of inter-related units, and showed the significance of geographical diversity in the history of mankind.

Few works have exerted greater influence upon the philosophy of geography as Ritter's 'Erkunde'. His work has been considered as the starting-point of modern geographical thinking.
Prior to Ritter, geographic treatises had been mainly compendia of data selected because they might be useful. Against this utilitarian political role, Ritter asserted for geography the status of an independent discipline.

Ritter was significant for his time as an exponent of theistic environmentalism. He considered the earth as 'the preparatory school of the human race'. Two kinds of enquiry were indicated by Ritter's general thesis: (a) that which sought to determine the content of regions, and (b) that which noted the recurrence or permanence of environmental influence on human groups. His definition of natural regions was based not on interest in the genesis of physical land-forms but on a desire to discover the potentialities of human progress.

From the knowledge of the physical world, Ritter proceeded to his ultimate theme, the relation or value of the earth to man. He re-defined for his time the views of Aristotle and Strabo on environmental influences as determining the course of history.

Ritter is commonly regarded as the first modern exponent of the school of thought which holds that geographic elements including climate are often a force that mould the affairs of men. He held that zones according to indigenous trees rather than latitude are easily establishable over the entire earth. This is properly 'Regional Geography', or the 'Regional Concept' in geography.
The labours of Humboldt and Ritter in particular, and subsequently of their followers, in general, have given to the science of geography a more philosophical, and, at the same time, a more imaginative character than it had received from its predecessors. Perhaps, the most interesting field of speculation thrown open by these pioneers to the cultivators of this attractive study is the enquiry: how far external physical conditions, especially the configuration of the earth's surface, and the distribution, outline, and relative position of land and water, have influenced the social life and social progress of man.

In summary, it may be said that both Humboldt and Ritter, in their philosophical point of view, were products of their time. In particular, both were influenced by the thought of Kant and Rousseau. Both differed from their philosophical and literary predecessors in that both strove to demonstrate their philosophical concepts not by deductive logic nor by sentimental descriptions of subjective impressions of nature, but by objective descriptions of nature. In general, neither Humboldt nor Ritter saw any conflict between science and philosophy. Ritter found that both geography and history are directed toward the integration of ideas and are therefore forced to philosophize.

Dissatisfaction with the mere massing of facts as an end in itself began to make itself evident in the latter half of the nineteenth century. It was, perhaps, most prominent in the field of biology, particularly as it led to heated discussions with theologians.
Man was searching for an interpretation of the facts he was gathering in embarrassing array from all natural science. He was endeavouring to find a meaning for the infinitely complex systems under which matter, occupying 'Place', seemed to be regulated. It was a demand for rationality, as distinct from man's feeling of a divinity, that underlay this quest. He was prepared to receive a Supreme Power that created matter, but he asked that matter, once created, should behave according to some ascertainable law. He had no longer an inclination to explain facts by reference to the supernatural or to the whimsies of a vacillating Creator.

So, in the laboratory first, the scientist sought an explanation for the odd happenings in his test tubes; the biologist then devised theories of Natural Selection, and the economist began to study the man-made systems of trade. What was missing was a coordination of those sciences in terms of 'Place', a study that would interpret the findings of these subjects as a whole, as applied to the surface of the world on which man lived. In other words, with the advances in scientific and human studies, this period was marked by the accelerated tempo of advances in all fields of science, and this provided a great stimulus to geographical progress by the growing impact of science on everyday life and by its increasingly international character.

Geography, which till this time was lacking in a really comprehensive scheme to provide a synthesis, was helped by Darwin's theory of Natural Selection with an attractive framework into which contemporary scientists
fitted a vast number of facts. Its effects upon geographical philosophy were varied and stimulating. By its emphasis on the time factor in the study of man on the earth, it welded history and geography into an even closer association. It also inspired a more thorough investigation of his environment, and by placing man's evolution in the foreground, geography as a study became more enriched.

Thus geography, as a pursuit of wisdom with respect to 'Place' became the interpretation of the facts of distribution, the correlation of the life of man with his environment, and the explanation of the inter-action of human and natural agencies.

Though there is evidence of the influence of this line of thought in earlier periods as early as Hippocrates (c. 420 B.C.), and not so long ago as during the period of Rationalism, when Jean Bodin (the French political theorist saw, or thought he saw, the effect of climate on states, laws, religion, land, temperament and national character, it was strongest in Germany during the second half of the nineteenth century. This school of environmentalists held that differences in human ways are fundamentally due to, or are linked with, differences in natural environment. Its proponents thought mostly in terms of the earth's influence on man and laid stress on the physical elements of the landscape.

F. Ratzel, of Germany, was the first systematic environmentalist in the anthropological field. He set out to establish the laws of the physical environment which determine human activities, distributions, and organization, in both space and time. Ellen Churchill Semple, of the United
States of America (1863-1932) was his most distinguished pupil. Environmental domination over man was faithfully accepted by this school, and the phrase, 'Man is a product of the earth's surface', or 'the sovereign influence of environment', or 'geographical determinism' summed up the essence of its viewpoint.

There is no surprise that this form of 'geographical determinism' flourished quite vigorously in the late nineteenth century. This is due largely to the fact that it fitted with the strong philosophical trend of the time. So it is quite evident that geography owed much to the stimulus of the ideas of this school of thought known as 'Determinism'.

At the same time, an opposing school of geographical thought was making rapid strides in France. It was the result of the new studies in sociology and the influences of Darwin's theory in his 'Origin of Species'. It was also influenced partly by the writings of Ritter. This school of thought held the other side of the string from the school of Determinism where there was a growing appreciating of the physical basis of geography. For this school, 'Man was the focus of the environment; he was the modifying agent, also the creator: only certain opportunities were created by the environment'. When considering the relationship of nature and man, this school emphasized very strongly the importance of geology as a basis of regional differentiation, and took the greatest pains to understand the geological background and to trace out its features in the field.

Vidal de la Blache (1845-1918) and Jean Brunhes (1869-1930) were the most
brilliant exponents of this school, and its philosophy goes by the name of 'Possibilism'. Huntington and Carl-Sauer are advocates of this school which is dominating at present.

By 'Possibilism', de la Blache did not mean that man is a free agent for whom anything is possible. He recognized fully that man's choice is severely restricted by the value system of his society, its organisation, technology, in short, by what de la Blaches called man's 'genre de vie', that is, 'way of life'.

However, it was de la Blache who defined clearly the new goals for geography though his views have since been refined and new ideas added. But he deserves the credit for turning the tide of environmental determinism and for paving the way for systematic regional geography thought in which the study of physical environment and the study of society were linked because they were inseparable. However, the work of Vidal de la Blache is only one of a range of variants within the general 'Regional' view of geography.

During the latter half of the nineteenth century and early twentieth century, there were a number of deviant developments in geographical thought, among them, the idea of defining geography as a science of relationships. And while new concepts appeared in physical geography and biogeography, no similar principles were immediately forthcoming to organize the treatment of man and his social institutions. It was in this situation that an attempt was made to relate the human aspects of geography to the better understood physical aspects, and to define geography as the study
of the inter-relationships between man and his physical environment.

With the genetic interpretation of land-forms by Peschel, Richthofen, Penck, Davis, and others, and the attempt to bring the treatment of man into line with the treatment of physical features by Ratzel, Leplay, and his disciples, there developed two distinct aspects of geography, physical and human. In other words, geography was divided into physical geography, a well-developed field science, and human geography, a relatively superficial treatment of man's relations to the physical earth. This dualistic concept was partly defeated by Ratzel to whom is principally due the third principle of geographical method, that is, the principle of extension and distribution.

Ratzel saw man as the end product of evolution, an evolution in which the manispring was the natural selection of types according to their capacity to adjust themselves to the physical environment. He tended to see man as the product of his environment, moulded by the physical forces that surrounded him, and succeeding only in so far as he made the correct adjustment to their demands. He thus corrected the prevailing tendency to over-stress the physical aspects of geography and to establish a more balanced viewpoint. And so geography came to be defined as the science of distribution, particularly current in the first decade of the present century. Man was regarded as the culminating point of the subject, but it was equally concerned with all phenomena on the earth's surface.

With the rapid spread of interest in scientific geography in other parts
of the world, rival schools of thought were being established in most European countries and in the United States of America. The work of these rival schools vastly widened the field of research, and further deepened and enriched the current of geographical thought with interesting results. But geography, as a science of relationships, was gaining ground in the English-speaking world. However, it was the French School, the outgrowth of the teaching and example of Vidal de la Blache, that helped to bridge the gulf that was tending to form between physical geography and geography as applied to man, especially within the German School. In other words, the French School consolidated this assertion of unity by re-affirming that geography concerns the changing and interesting interaction between man, or human beings, and the non-human environment.

But it is Alfred Hettner, a German geographer with a thorough training in philosophy, who worked out the implications of this new philosophy for the science of geography. In his writings, he revived Kant's definition of the subject, and within this framework welded the systematic studies of Humboldt, Ratzel, and others, and the regional studies as defined by Ritter and Richtofen, into a coherent whole.

At the dawn of this century, therefore, geography had already laid the solid foundation on which its house could be built. It was no more a general earth science, but the chorological science of the earth's surface. It became a science concerned with man and the earth on which he lived. Later, it developed a philosophy. In fact, geography would never
have gained philosophical significance in modern times if it had not become a science.

Thus, it concerned itself chiefly with the interplay between nature and man, an evaluation of spatial relations. It became primarily a study of areas or regions involving descriptions as well as explanations derived either analytically or synthetically. The delimitation of regions became one of the major problems in geography, while observation in the field became the basis for geographic approach.

General geography which follows systematically the distribution of the various geographic phenomena over the earth's surface, was distinguished from special or regional geography which elicits the concept of geographic regions. In short, geography became the study of physical and human factors together by regions, and the distinctive sphere of the discipline became the region within which framework is played the drama between man and environment.

The study of geography by regions has awakened the subject from the deep slumber into which it had fallen. It is through the region that new life has been given to the dead bones of geography. As Griffith Taylor has said, 'Geography is the art of recognizing and describing the personalities of regions.' Like human individuals, regions have very different characters which are constantly changing and developing.