CHAPTER 5

A TYPE OF EXTENSIONS OF

TOPOLOGICAL SPACES
Chapter 5

A TYPE OF EXTENSIONS OF TOPOLOGICAL SPACES

5.1. INTRODUCTION

In Chapter 1 we discussed to some extent about a few types of extensions of topological spaces. It was pointed out there as to how principal extensions and \(\theta \)-principal extensions can be applied to many topological investigations of pivotal importance like the study of compactness, \(H \)-closedness and above all proximities. The intent of this chapter is to build up a basic theory for a kind of extensions in a way similar to the existing theories done in [128, 25], and we believe that such a theory has close bearing to the study of a well known covering property viz. near compactness, as may be revealed when this line of approach is continued to further extent in future investigations.

In Section 1 we first introduce the concept of \(\delta \)-extension of a topological space in a natural way. Then follows a number of grill-related concepts like \(\delta \)-adherence grill, \(\delta \)-grill, \(\delta \)-trace system of a \(\delta \)-extension etc. After defining \(\delta \)-equivalence of \(\delta \)-extensions, we prove a few results which ultimately lead us to establish that the \(\delta \)-equivalence of \(\delta \)-extensions of a certain class of topological spaces can be
A typical δ-extension, termed δ-principal extension, is introduced in Section 3, and it is observed that δ-principal extensions are uniquely determined by their δ-trace systems. Then we give the construction of a δ-principal extension X^* of a topological space X, δ-homeomorphic to any given δ-principal extension of X, where X^* is a set of some typical grills on X. Finally, we show that this constructed δ-extension X^* satisfies a kind of covering property iff the collection X^* of grills satisfies a specific condition.

5.2. δ-EXTENSIONS, δ-TRACE AND δ-EQUIVALENCE

First we clarify certain well known concepts before we introduce the intended notion of δ-extensions.

Definition 5.2.1. [199] Let (X, τ) be a topological space. A point x of X is said to be a δ-adherent point of A if $\text{int}clU \cap A \neq \emptyset$, for each open nbd U of x. The set of all δ-adherent points of A is called the δ-closure of A, to be denoted by $\delta-clA$.

A set $A(\subseteq X)$ is called δ-closed if $A = \delta-clA$, and the complement of a δ-closed set is said to be δ-open.

The notion of semiregularization topology plays a predominant role in this chapter. Although its definition was given in Chapter 2, we prefer to recall it here once again.

Definition 5.2.2. [121] The set of all δ-open sets of a topological space (X, τ) forms a topology on X, called the semiregularization topology on X and denoted
by \(\tau_s \), such that \(\tau_s \subseteq \tau \) and for which the set of all regular open sets forms an open base. Thus a set \(A \) in \(X \) is \(\delta \)-open iff it is a union of some regular open sets.

Definition 5.2.3. [143] A function \(f : X \to Y \) is said to be \(\delta \)-continuous if for each \(x \in X \) and each open nbd \(V \) of \(f(x) \), there exists an open nbd \(U \) of \(x \) in \(X \) such that \(f(\text{int}U) \subseteq \text{int}V \).

The function \(f \) is called a \(\delta \)-homeomorphism if \(f \) is a bijection such that \(f \) and \(f^{-1} \) are \(\delta \)-continuous; in such a case \(X \) and \(Y \) are said to be \(\delta \)-homeomorphic.

Theorem 5.2.4. (a) [123] A function \(f : X \to Y \) is a \(\delta \)-homeomorphism iff \(f(\delta\text{-cl}A) = \delta\text{-cl}(f(A)) \), for each \(A \subseteq X \).

(b) [123] Two spaces \((X, \tau)\) and \((Y, \sigma)\) are \(\delta \)-homeomorphic iff \((Y, \sigma)\) is homeomorphic to some space \((X, \Sigma)\) such that \(\Sigma_s = \tau_s \).

We now introduce the following definition.

Definition 5.2.5. A \(\delta \)-extension of a topological space \(X \) is defined to be a pair \((\Psi, Y)\) if \(Y \) is a topological space and \(\Psi : X \to Y \) is an injective map such that \(\Psi(\delta\text{-cl}A) = \delta\text{-cl}(\Psi(A)) \cap \Psi(X) \) for each \(A \subseteq X \), and \(\delta\text{-cl}\Psi(X) = Y \).

Remark 5.2.6. It is easy to observe that \((\Psi, Y)\) is a \(\delta \)-extension of a space \((X, \tau)\) iff \((\Psi, Y_s)\) is an extension of \((X, \tau_s)\).

We next define two typical grills which will turn out to play crucial roles throughout the rest of the chapter. To that end, we first see that a routine check establishes the following result.

Theorem 5.2.7. For each point \(x \) of a topological space \(X \), \(G(\delta, x) = \{ A \subseteq X : x \in \delta\text{-cl}A \} \) is a grill on \(X \).
Definition 5.2.8. For each $x \in X$, the grill $G(\delta, x)$, as defined above, is called the δ-adherence grill at x on X.

Definition 5.2.9. A grill G on a space X is called a δ-grill if for any $A \subseteq X$, $\delta-cl A \in G \Rightarrow A \in G$.

Observation 5.2.10. Clearly, every δ-adherence grill $G(\delta, x)$ on a space X (where $x \in X$) is a δ-grill on X. Indeed, for any $A \subseteq X$, $\delta-cl A \in G(\delta, x) \Rightarrow x \in \delta-cl(\delta-clA) = \delta-cl A \Rightarrow A \in G(\delta, x)$.

Definition 5.2.11. A space (X, τ) is said to be δ-T_0 if for any two distinct points x, y of X, there exists a regular open set U in X containing one of x and y, and not the other.

Remark 5.2.12. A space (X, τ) is δ-T_q iff (X, t_s) is T_q.

Theorem 5.2.13. A topological space (X, τ) is δ-T_0 iff $\forall x, y \in X, G(\delta, x) = G(\delta, y) \Rightarrow x = y$.

Proof. Let (X, τ) be δ-T_0 and $x, y \in X$ such that $x \neq y$. Then $x \notin \delta-cl\{y\}$ (say).

But as $y \in \delta-cl\{y\}$, $G(\delta, x) \neq G(\delta, y)$.

Conversely, let $x, y \in X$ with $x \neq y$. By hypothesis, there exists $A \subseteq X$ such that $A \in G(\delta, x)$ but $A \notin G(\delta, y)$ (say), i.e., $x \in \delta-cl A$ but $y \notin \delta-cl A$. Then there is a regular open set U in X such that $y \in U$ and $U \cap A = \emptyset$. But since $x \in \delta-cl A$, $x \notin U$ (as $x \in \delta-cl A$ and $x \in U \Rightarrow U \cap A \neq \emptyset$). Thus X is δ-T_0.

We now define a specific type of grills associated with each point of a δ-extension.

Definition 5.2.14. Let $E = (\Psi, Y)$ be a δ-extension of a topological space X. Then, for any $y \in Y$, the δ-trace of y on Y is defined to be a collection $\tau(y, E)$ given by

113
The collection \(\{r(y, E) : y \in Y\} \) is called the \(\delta \)-trace system of the extension \(E \) on \(X \).

Theorem 5.2.15. Let \(E = (\Psi, Y) \) be a \(\delta \)-extension of a topological space \(X \). Then for each \(y \in Y \), \(r(y, E) \) is a \(\delta \)-grill on \(X \).

Proof. That \(r(y, E) \) is a grill can be established by a routine check. To show that \(r(y, E) \) is a \(\delta \)-grill, let \(A \subseteq X \). Then \(\delta-clA \in r(y, E) \Rightarrow y \in \delta-cl\Psi(\delta-clA) = \delta-cl[\delta-cl\Psi(A) \cap \Psi(X)] \subseteq \delta-cl\Psi(A) \cap Y = \delta-cl(\Psi(A)) \Rightarrow A \in r(y, E) \). Hence \(r(y, E) \) is a \(\delta \)-grill on \(X \), for each \(y \in Y \).

Theorem 5.2.16. Let \(E = (\Psi, Y) \) be a \(\delta \)-extension of a topological space \(X \). Then for each \(x \in X \), \(r(\Psi(x), E) = G(\delta, x) \).

Proof. We have, \(r(\Psi(x), E) = \{A \subseteq X : \Psi(x) \in \delta-cl(\Psi(A))\} = \{A \subseteq X : \Psi(x) \in \delta-cl(\Psi(A)) \cap \Psi(X)\} = \{A \subseteq X : x \in \delta-clA\} \) (as \(\Psi \) is injective) = \(G(\delta, x) \).

Theorem 5.2.17. Let \(E = (\Psi, Y) \) be a \(T_2 \) \(\delta \)-extension of a \(T_2 \) topological space \((X, \tau) \). Then \(\delta \)-traces of different points of \(Y \) are different.

Proof. Consider two distinct points \(y_1, y_2 \) of \(Y \). By Hausdorffness of \(Y \), there exist open sets \(A \) and \(B \) in \(Y \) such that \(y_1 \in A \), \(y_2 \in B \) and \(A \cap B = \emptyset \). Clearly \(y_2 \notin \delta-cl(\Psi(X)) \). We put \(U = \Psi^{-1}(A) \) which gives \(\Psi(U) = A \cap \Psi(X) \). Thus \(y_2 \notin \delta-cl\Psi(U) \) and hence \(U \notin r(y_2, E) \) \(\cdots (1) \).

If possible, let \(y_1 \notin \delta-cl\Psi(U) = \delta-cl(\Psi(X)) \). Since \(\delta-cl(\Psi(X)) \) is a closed set, \(A \setminus \delta-cl(\Psi(X)) \) is an open nbhd of \(y_1 \). Then \(cl(A \setminus \delta-cl(A \cap \Psi(X))) = \delta-cl(A \setminus \delta-cl(A \cap \Psi(X)) \subseteq A \setminus \Psi(X) \). So, intcl(\(A \setminus \delta-cl(\Psi(X)) \)) \(\subseteq Y \setminus \Psi(X) \), which gives \(intcl(A \setminus \delta-cl(\Psi(X))) \cap \Psi(X) = \emptyset \), contradicting the fact that \(\delta-cl\Psi(X) = Y \).
Thus \(y_1 \in \delta\text{-cl}(\Psi(X) \cap A) = \delta\text{-cl}(\Psi(U)) \), i.e., \(U \in \tau(y_1, E) \cdots (2) \).

From (1) and (2) it follows that \(\tau(y_1, E) \neq \tau(y_2, E) \).

Definition 5.2.18. Two \(\delta \)-extensions \((\Psi_1, Y_1)\) and \((\Psi_2, Y_2)\) of a topological space \(X \) are called \(\delta \)-equivalent if there is some \(\delta \)-homeomorphism \(f : Y_1 \to Y_2 \) such that \(f \circ \Psi_1 = \Psi_2 \).

Our aim now is to show that for a certain class of topological space, the \(\delta \)-equivalence of \(\delta \)-extensions of such a space can be characterized in terms of the concept of \(\delta \)-trace systems. The following theorem is the first step towards that direction.

Theorem 5.2.19. If two \(\delta \)-extensions of a topological space are \(\delta \)-equivalent, then the extensions have the same \(\delta \)-trace systems.

Proof. Let \(E_1 = (\Psi_1, Y_1) \) and \(E_2 = (\Psi_2, Y_2) \) be two \(\delta \)-equivalent \(\delta \)-extensions of a given topological space \(X \). Then there exists a \(\delta \)-homeomorphism \(f : Y_1 \to Y_2 \) such that \(f \circ \Psi_1 = \Psi_2 \cdots (1) \).

Then for any \(y \in Y_1 \), \(A \in \tau(y, E_1) \iff y \in \delta\text{-cl}(\Psi_1(A)) \iff f(y) \in f(\delta\text{-cl}(\Psi_1(A))) = \delta\text{-cl} f(\Psi_1(A)) \) (as \(f \) is a \(\delta \)-homeomorphism) \(\iff f(y) \in \delta\text{-cl} \Psi_2(A) \) (by (1)) \(\iff A \in \tau(f(y), E_2) \). Thus \(\tau(y, E_1) = \tau(f(y), E_2) \), for each \(y \in Y_1 \). Since \(f \) is a bijection, it then follows that \(\{\tau(y, E_1) : y \in Y_1\} = \{\tau(z, E_2) : z \in Y_2\} \).

In order to achieve the converse of the theorem above, we require to introduce certain new concepts, which we explain in the sequel.

Definition 5.2.20. A collection \(B \) of \(\delta \)-closed sets in a space \(X \) is called a \(\delta \)-base for \(X \) if each \(\delta \)-closed set is expressible as an intersection of some members of \(B \).

Clearly the above definition could equivalently be given as follows.

115
Theorem 5.2.21. A collection B of δ-closed sets in a topological space X is a δ-base of X iff for each δ-closed set F and each point $x \notin F$, there exists $B \in B$ such that $x \notin B$ and $F \subseteq B$.

Theorem 5.2.22. Let $f : X \rightarrow Y$ be a bijection. If f maps a δ-base of X onto a δ-base of Y, then f is a δ-homeomorphism.

Proof. Let B be a base of X and $f(B) = \{f(B) : B \in B\}$ be a δ-base of Y. In order to show that f is a δ-homeomorphism, it suffices to show that $f(\delta-cl(A)) = \delta-clf(A), \forall A \subseteq X$.

Consider any $A \subseteq X$ and $y \notin \delta-clf(A)$. Since $f(B)$ is a δ-base of Y, $\delta-clf(A) = \cap\{f(B_\alpha) : B_\alpha \in B_0\}$, where $B_0 \subseteq B$. Then $y \notin f(B_\alpha)$ for some $B_\alpha \in B_0$. Now, $f(A) \subseteq \delta-clf(A) \subseteq f(B_\alpha) \Rightarrow A \subseteq B_\alpha$ (as f is a bijection) $\Rightarrow \delta-clA \subseteq \delta-clB_\alpha = B_\alpha$ (since B_α is δ-closed). But $y \notin f(B_\alpha)$, so that $y \notin f(\delta-clA)$.

Hence $f(\delta-clA) \subseteq \delta-clf(A)$ \cdots (1).

Now let $y \notin f(\delta-clA)$. Since $\delta-clA = \cap\{B_\alpha : B_\alpha \in B_0\}$ where $B_0 \subseteq B$, $y \notin f(\delta-clA) = f(\cap\{B_\alpha : B_\alpha \in B_0\}) = \cap\{f(B_\alpha) : B_\alpha \in B_0\}$ (since f is a bijection) $\Rightarrow y \notin f(B_\beta)$, for some $B_\beta \in B_0 \subseteq B$.

Again, $A \subseteq \delta-clA \subseteq B_\beta \Rightarrow \delta-clf(A) \subseteq \delta-clf(B_\beta) = f(B_\beta)$ ($f(B)$ being a δ-base in Y) $\Rightarrow y \notin \delta-clf(A)$. Thus $\delta-clf(A) \subseteq f(\delta-clA)$ \cdots (2).

From (1) and (2) the result follows.

Analogous to the concept of complete regularity, we now define as follows.

Definition 5.2.23. A topological space X is said to be δ-completely regular if for each δ-closed set F in X and each $x \in X \setminus F$, there exists a δ-continuous function $f : X \rightarrow \mathbb{R}$ such that $f(x) = 1$ and $f(F) = \{0\}$.

Theorem 5.2.24. Let (Ψ, Y) be a δ-completely regular δ-extension of a δ-completely regular topological space X. Then the family $\{\delta-cl\Psi(A) : A \subseteq X\}$ constitutes a
Proof. Consider any \(\delta \)-closed set \(F \) in \(Y \) and \(y \in Y \setminus F \). Then by \(\delta \)-complete regularity of \(Y \), there exists a \(\delta \)-continuous function \(f : Y \to \mathbb{R} \) such that \(f(y) = 1 \) and \(f(F) = \{0\} \). Define \(B = \{ z \in \Psi(X) : f(z) \leq 1/2 \} \). We shall show that \(F \subseteq \delta \text{-cl} B \) and \(y \notin \delta \text{-cl} B \).

It is clear that \(y \notin \delta \text{-cl} B \) (since \(y \in f^{-1}(2/3, \infty) \) such that \(\text{int}(f^{-1}(2/3, \infty)) \cap B = \emptyset \)). If possible, let \(F \subseteq \delta \text{-cl} B \). Then there exists some \(z \in F \) such that \(z \notin \delta \text{-cl} B \). Thus there is an open set \(U \) containing \(z \) such that \(\text{int}(U \cap B) = \emptyset \).

Now, \(U \cap f^{-1}(-\infty, 1/2) \) is an open set containing \(z \) (as \(f(z) = 0 \)) such that \(\text{cl}(U \cap f^{-1}(-\infty, 1/2)) \subseteq \text{cl}(U \cap f^{-1}(-\infty, 1/2]) \subseteq \text{int}(U \cap f^{-1}(-\infty, 1/2]) \) and hence \(\text{int}(U \cap f^{-1}(-\infty, 1/2]) \cap \Psi(X) \subseteq \text{int}(U \cap f^{-1}(-\infty, 1/2]) \cap \Psi(X) \subseteq \text{int}(U \cap f^{-1}(-\infty, 1/2]) \cap \Psi(X) = \emptyset \), which contradicts that \(\delta \text{-cl} \Psi(X) = Y \).

So, \(F \subseteq \delta \text{-cl} B \). Let us choose \(A = \Psi^{-1}(B) \). Then \(\Psi(A) = B \) and \(F \subseteq \delta \text{-cl} \Psi(A) \) with \(y \notin \delta \text{-cl} \Psi(A) \). By Theorem 5.2.21, it follows that \(\{ \delta \text{-cl} \Psi(A) : A \subseteq X \} \) is a \(\delta \)-base for \(Y \).

We are now in a position to prove the following result towards the converse of Theorem 5.2.19.

Theorem 5.2.25. Let \(X \) be a \(T_2 \), \(\delta \)-completely regular space and \(E_1 = (\Psi_1, Y_1) \) and \(E_2 = (\Psi_2, Y_2) \) be two \(T_2 \), \(\delta \)-completely regular \(\delta \)-extensions of \(X \) such that \(E_1 \) and \(E_2 \) have identical \(\delta \)-trace systems. Then \(E_1 \) and \(E_2 \) are \(\delta \)-equivalent.

Proof. Since \(\{ \tau(y, E_1) : y \in Y_1 \} = \{ \tau(z, E_2) : z \in Y_2 \} \), for each \(y \in Y_1 \) there exists a unique (by virtue of Theorem 5.2.17) \(z \in Y_2 \) such that

\[
\tau(y, E_1) = \tau(z, E_2) \quad \cdots (1).
\]

Define a map \(f : Y_1 \to Y_2 \) given by \(f(y) = z \), where \(\tau(y, E_1) = \tau(z, E_2) \). From (1) it follows that \(f \) is a bijection of \(Y_1 \) onto \(Y_2 \), and

\[
\tau(y, E_1) = \tau(f(y), E_2), \forall y \in Y_1 \quad \cdots (2).
\]
In particular, for each \(x \in X \), \(\tau(\Psi_1(x), E_1) = \tau(f(\Psi_1(x)), E_2) \). But by Theorem 5.2.16, \(\tau(\Psi_1(x), E_1) = G(\delta, x) = \tau(f(\Psi_1(x)), E_2) \), and \(\tau(\Psi_2(x), E_2) = G(\delta, x) \). Hence \(\tau(f(\Psi_1(x), E_2)) = \tau(\Psi_2(x), E_2) \). Then by Theorem 5.2.17, \(f(\Psi_1(x)) = \Psi_2(x) \), for each \(x \in X \). Thus \(f(\Psi) = \Psi_2 \).

Now for any \(A \subseteq X \), \(y \in \delta-cl \Psi_1(A) \Leftrightarrow f(y) \in \delta-cl \Psi_2(A) \) (by (2)). So, \(f(\delta-cl \Psi_1(A)) = \delta-cl \Psi_2(A) \), \(\forall A \subseteq X \). Since by Theorem 5.2.24, \(\{\delta-cl \Psi_1(A) : A \subseteq X \} \) and \(\{\delta-cl \Psi_2(A) : A \subseteq X \} \) are \(\delta \)-bases of \(E_1 \) and \(E_2 \) respectively, it follows by Theorem 5.2.22 that \(f \) is a \(\delta \)-homeomorphism.

From Theorems 5.2.19 and 5.2.25 it follows that

Corollary 5.2.26. Two \(T_2 \), \(\delta \)-completely regular \(\delta \)-extensions \(E_1 = (\Psi_1, Y_1) \) and \(E_2 = (\Psi_2, Y_2) \) of a \(T_2 \), \(\delta \)-completely regular space \(X \) are \(\delta \)-equivalent iff \(E_1 \) and \(E_2 \) have identical \(\delta \)-trace systems.

5.3. A TYPICAL \(\delta \)-EXTENSION AND LINKAGE NEAR COMPACTNESS

In this section we shall introduce a special type of \(\delta \)-extension which will be called \(\delta \)-principal extension. We shall give an explicit construction of such an extension and show that this extension satisfies a kind of covering property if the grills, under consideration, are chosen suitably.

Definition 5.3.1. A \(\delta \)-extension \(E = (\Psi, Y) \) of a topological space \(X \) is called a \(\delta \)-principal extension of \(X \) if the following two conditions hold:

(i) For all \(y_1, y_2 \in Y \), \(\tau(y_1, E) = \tau(y_2, E) \Rightarrow y_1 = y_2 \)

(ii) \(\{\delta-cl \Psi(A) : A \subseteq X \} \) is a \(\delta \)-base for \(Y \).
Remark 5.3.2. By virtue of Theorems 5.2.17 and 5.2.24 it follows that any Hausdorff δ-completely regular δ-extension of any δ-completely regular Hausdorff space is an example of a δ-principal extension.

Looking at the proof of Theorem 5.2.25 it can be easily seen that

Theorem 5.3.3. Let E_1 and E_2 be two δ-principal extensions of a topological space X. If E_1 and E_2 have the identical δ-trace systems then E_1 and E_2 are δ-equivalent; i.e., δ-principal extensions are uniquely determined by their δ-trace systems.

From Theorem 5.2.13 it follows at once that any topological space admitting a δ-principal extension is necessarily δ-T_0. In fact, we have even more:

Theorem 5.3.4. Every δ-principal extension $E = (\Psi, Y)$ of a space X is a δ-T_0 space.

Proof. For any $y_1, y_2 \in Y$ we have, $G(\delta, y_1) = G(\delta, y_2) \Rightarrow \tau(y_1, E) = \{A \subseteq X : y_1 \in \delta-cl\Psi(A)\} = \{A \subseteq X : \Psi(A) \in G(\delta, y_1)\} = \{A \subseteq X : \Psi(A) \in G(\delta, y_2)\} = \tau(y_2, E) \Rightarrow y_1 = y_2$. The rest follows from Theorem 5.2.13.

We now give a method for construction of δ-principal extension of a δ-T_0 topological space.

Theorem 5.3.5. Let $E = (\Psi, Y)$ be a δ-principal extension of a δ-T_0 topological space X. Then E is δ-homeomorphic to a δ-extension $E^* = (g, X^*)$ of X where X^* is a collection of δ-grills on X containing all the δ-adherence grills.

Proof. Let $X^* = \{\tau(y, E) : y \in Y\} \equiv \delta$-trace system of E on X. Then by Theorems 5.3.15 and 5.2.16, X^* is a collection of δ-grills, containing all the δ-adherence grills in X. We define a mapping $g : X \rightarrow X^*$ given by $g(x) = G(\delta, x)$. Now for any two distinct points x_1, x_2 of X, we have $G(\delta, x_1) \neq G(\delta, x_2)$ as X is
\(\delta-T_0\) (by Theorem 5.2.13) and hence \(g\) is injective.

Let us put \(A^C = \{G \in X^*: A \in G\}\) for any \(A \subseteq X\), and \(B = \{A^C: A \subseteq X\}\). It is clear that \(\Phi^C = \Phi\) and \((A \cup B)^C = A^C \cup B^C\) for any \(A, B \subseteq X\). Thus \(B\) forms a base for closed sets for some topology on \(X^*\). The Kuratowski closure operator, inducing this topology, is given by \(cl(\alpha) = \cap\{A^C: \alpha \subseteq A^C, A \subseteq X\}, \forall \alpha \subseteq X^*\).

We have the following properties:

(i) \(g(\delta-clA) = A^C \cap g(X)\):

Indeed, \(g(x) \in g(\delta-clA) \iff x \in \delta-clA\) (since \(g\) is injective) \(\iff A \in G(\delta, x) = g(x) \iff g(x) \in A^C \cap g(X)\).

(ii) \(g(A) \subseteq A^C\): This is a consequence of (i).

(iii) For any \(A \subseteq X\), \(cl(g(A)) = A^C\): In view of (ii), it is enough to show that whenever \(g(A) \subseteq B^C\) for some subset \(B\) of \(X\), then \(A^C \subseteq B^C\). So, we assume that \(g(A) \subseteq B^C\) for some \(B \subseteq X\). Then, \(x \in A \Rightarrow G(\delta, x) = g(x) \in B^C \Rightarrow B \in G(\delta, x) \Rightarrow x \in \delta-clB\). Thus \(A \subseteq \delta-clB\). This implies that \(A^C \subseteq (\delta-clB)^C = B^C\).

For, \(G \in B^C \iff B \in G \iff \delta-clB \in G\) (as in Observation 5.2.10 it can be shown that every element of \(X^*\) is a \(\delta\)-grill) \(\iff G \in (\delta-clB)^C\).

From (i) and (iii) we obtain, \(g(\delta-clA) = cl(g(A)) \cap g(X) \cdots (1)\).

If we denote the \(\delta\)-topology of \(X\) by \(\tau\), then \((X, \tau)\) is homeomorphic to \(g(X)\) (in view of (1)). We know that \((X, \tau)\) is \(\delta\)-equivalent to \((X, \tau)\) (as \((\tau_\delta) = \tau)\) [121]).

So, \((X, \tau)\) is \(\delta\)-homeomorphic to \(g(X)\) (by Theorem 5.2.4 (b)). In view of (iii) we have, \(\delta-clg(X) \supseteq clg(X) = X^C = X^*\). Hence \(E^* = (g, X^*)\) is a \(\delta\)-extension of \((X, \tau)\).

Now, we define a map \(f: Y \rightarrow X^*\) by \(f(y) = \tau(y, E)\). As \(Y\) is a \(\delta\)-principal extension of \(X\), \(f\) is a bijection. Again, for any \(A \subseteq X\), \(f(\delta-cl\Psi(A)) = A^C\); indeed, \(y \in \delta-cl\Psi(A) \iff A \in \tau(y, E) \iff \tau(y, E) \in A^C\) so that \(f(\delta-cl\Psi(A)) = A^C\).

Since \(\{\delta-cl\Psi(A): A \subseteq X\}\) is a \(\delta\)-base for \(Y\), the semiregularization space of \(Y\) is
homeomorphic to \(X^* \), and hence \(Y \) is \(\delta \)-homeomorphic to \(X^* \).

We now like to point out that as a particularization of our unified theory of \((P, G) \)-compactness in Chapter 2, one can characterize near compactness of a topological space in terms of grills. To do this, we need to frame the following definition analogous to the corresponding definition of the convergence of grills.

Definition 5.3.6. A grill \(G \) on a topological space \(X \) is said to \(\delta \)-converge to a point \(x \) of \(X \) if for each regular open set \(U \) containing \(x \), there is some \(G \in \mathcal{G} \) such that \(G \subseteq U \).

It follows by Observation 2.2.8 and Theorem 2.2.20 that

Theorem 5.3.7. A topological space \((X, \tau) \) is nearly compact iff every grill \(G \) on \(X \) \(\delta \)-converges.

Our intention here is to define a type of covering property, allied to near compactness, and to ultimately show that the \(\delta \)-principal extension, constructed in Theorem 5.3.5, satisfies the proposed covering property when the grills in \(X^* \) satisfies a suitable restriction.

Definition 5.3.8. Let \((\mathcal{G}, X^*) \) be the \(\delta \)-extension of a topological space \(X \), as obtained in Theorem 5.3.5. A collection of grills \(\{G_\alpha : \alpha \in \Lambda\} \) on \(X \) is said to be a \(\delta \)-binary collection of grills on \(X \), if for any grill \(G \) on \(X \), whenever each two membered subfamily \(\mathcal{A} \) of \(G \) is contained in some \(G_\alpha \), then \(\exists \beta \in \Lambda \) such that \(G_\beta \subseteq \bigcap_{G \in \mathcal{G}} \delta-clG \).

Definition 5.3.9. [25] A grill \(G \) on a topological space \(X \) is called a linked grill if for any two members \(A, B \) of \(G \), \(clA \cap clB \neq \Phi \).

Definition 5.3.10. A topological space \(X \) is called linkage nearly compact if for every linked grill \(G \) on \(X \), there exists a point \(x \) in \(X \) such that \(x \in \bigcap_{G \in \mathcal{G}} \delta-clG \).
Theorem 5.3.11. The δ-principal extension (g, X^*) of a δ-T_0 topological space X (as observed in Theorem 5.3.5) is linkage nearly compact iff X^* is a δ-binary collection of grills on X.

Proof. Let us first assume that X^* is linkage nearly compact. Let G be a grill on X such that each two membered subfamily of G is contained in some member of X^*. Then for any two given $A, B \in G$, there exists some $H \in X^*$ such that $A, B \in H$, so that $H \in A^C \cap B^C$. Thus for all $A, B \in G$, $A^C \cap B^C \neq \Phi$.

Let us define $A = \{ \alpha \subseteq X^* : g(A) \subseteq \alpha$ for some $A \in G \}$. It is clear that $\Phi \notin A$ and A is closed under the formation of supersets. To show that A is a grill on X^*, let α, β be any two subsets of X^* such that $\alpha \cup \beta \in A$. Then by construction of A, there exists some $A \in G$ with $g(A) \subseteq \alpha \cup \beta$.

Let us put $A_1 = \{ x \in A : g(x) \in \alpha \}$ and $A_2 = \{ x \in A : g(x) \in \beta \}$. Then $A_1 \cup A_2 = A \in G$ so that $A_1 \in G$ or $A_2 \in G$, which in turn implies that $g(A_1) \subseteq \alpha \in A$ or $g(A_2) \subseteq \beta \in A$. It now follows that A is a grill on X^*.

We next observe that A is a linked grill on X^*. In fact, $A^C = \text{cl}(g(A))$ (see (iii) of the proof of theorem 5.3.5) $\subseteq \text{cl} \alpha$, and $B^C = \text{cl}(g(B)) \subseteq \text{cl} \beta$, so that $\Phi \neq A^C \cap B^C \subseteq \text{cl}(\alpha) \cap \text{cl}(\beta)$, proving that $\text{cl}(\alpha) \cap \text{cl}(\beta) \neq \Phi$. Thus A is a linked grill on X^*. As X^* is linkage nearly compact, $\exists G_0 \in X^*$ such that $G_0 \in \bigcap_{A \in A} \delta-\text{cl} A$, i.e., $A \in G(\delta, G_0)$, $\forall A \in A$, and hence $A \subseteq G(\delta, G_0)$.

Now, $A \in G \Rightarrow g(A) \in A \Rightarrow g(A) \in G(\delta, G_0) \Rightarrow G_0 \in \delta-\text{cl}(g(A))$. Thus $G_0 \in \bigcap_{A \in G} \delta-\text{cl}(A)$, so that X^* becomes a δ-binary collection of grills.

Conversely, let X^* be a δ-binary collection of grills on X. We shall show that X^* is linkage nearly compact.
Let \(A \) be any linked grill on \(X^* \). We are to find some \(G_0 \in X^* \) such that \(A \subseteq G(\delta, G_0) \). Let us put \(A_1 = \{ A \subseteq X : g(A) \in A \} \) and \(A_2 = \{ A \subseteq X : A^C \setminus g(X) \in A \} \).

It can be checked that \(A_1 \) and \(A_2 \) are grills on \(X \), so that \(A_1 \cup A_2 \) (\(= A^* \), say) is also a grill on \(X \). Now, let \(\{ A, B \} \subseteq A^* \) be any two membered family in \(A^* \).

We consider the following cases to show that there exists some \(\Omega \in X^* \) such that \(A, B \in \Omega \).

Case 1: \(\{ A, B \} \subseteq A_1 \). Then \(g(A), g(B) \in A \Rightarrow \text{cl}(g(A)) \cap \text{cl}(g(B)) \neq \Phi \) (as \(A \) is a linked grill) \(\Rightarrow A^C \cap B^C \neq \Phi \Rightarrow \exists \Omega \in A^C \cap B^C \Rightarrow A \in \Omega \) and \(B \in \Omega \).

Case 2: \(\{ A, B \} \subseteq A_2 \). Then \(A^C \setminus g(X), B^C \setminus g(X) \in A \Rightarrow \text{cl}(A^C \setminus (g(X))) \cap \text{cl}(B^C \setminus (g(X))) \neq \Phi \Rightarrow \text{cl}(A^C) \cap \text{cl}(B^C) \neq \Phi \Rightarrow A^C \cap B^C \neq \Phi \) (see (iii) of the proof of Theorem 5.3.5) \(\Rightarrow \exists \Omega \in A^C \cap B^C \Rightarrow A, B \in \Omega \).

Case 3: \(A \in A_1 \) and \(B \in A_2 \). Then \(g(A) \in A \) and \(B^C \setminus g(X) \in A \Rightarrow \text{cl}(g(A)) \cap \text{cl}(B^C \setminus (g(X))) \neq \Phi \Rightarrow \text{cl}(g(A)) \cap \text{cl}(B^C) \neq \Phi \Rightarrow A^C \cap B^C \neq \Phi \Rightarrow \exists \Omega \in A^C \cap B^C \Rightarrow A, B \in \Omega \).

Since \(X^* \) is a \(\delta \)-binary collection of grills, there exists some \(G_0 \in X^* \) such that \(G_0 \in \delta - \text{cl}(K), \forall K \in A^* \cdots (1) \)

It now suffices to show that \(A \subseteq G(\delta, G_0) \). For this let \(\alpha \in A \) so that \(\alpha \in X^* \).

Now, \(\alpha = (\alpha \cap g(X)) \cup (\alpha \setminus g(X)) \) so that we have \(\alpha \cap g(X) \in A \) or \(\alpha \setminus g(X) \in A \). If \(\alpha \cap g(X) \in A \) then \(g^{-1}(\alpha) \in A_1 \). So by (1), \(G_0 \in \delta - \text{cl} \alpha \), and hence \(\alpha \in G(\delta, G_0) \), proving that \(A \subseteq G(\delta, G_0) \). The case when \(\alpha \setminus g(X) \in A \) can suitably be tackled.

This completes the proof.