LIST OF TABLES

Table 1: Global production of nanoparticle: table summarizing the application, nanomaterials used and the past, present and the projected global production of various nanomaterials

Table 2: Applications of NMs in biology and medicine

Table 3: Natural and anthropogenic sources of NMs less 100 nm

Table 4: Assay methods for evaluating toxicity of nanomaterials

Table 5 A: Review of literature on the toxicity of silver nanoparticle (Ag-np)

Table 5 B: Review of literature on the toxicity of Multiwalled Carbon Nanotubes (MWCNT)

Table 5 C: Review of literature on the toxicity of Titanium dioxide nanoparticle (TiO₂-np)

Table 5 D: Review of literature on the toxicity of Zinc oxide nanoparticle (ZnO-np)

Table 6: Chromosomal aberrations of mice bone marrow cells following treatment with different doses of Ag-np

Table 7: Comet parameter (% Tail DNA) of mice bone marrow cells following treatment with different doses of Ag-np. * P ≤ 0.05

Table 8: Mitotic index (MI), number of micronuclei / 1000 cells and % chromosomal aberrations revealing the genotoxic potential of MWCNT in Allium cepa roots as analyzed by Allium test and Allium anaphase - telophase chromosome aberration assay; * significant at P ≤ 0.05

Table 9: DNA damage determined by the bone marrow micronucleus assay and Comet assay in Swiss albino male mice, exposed to different concentrations of Multi walled Carbon Nanotubes (MWCNT); * significant at P ≤ 0.05
Table 10: Mitotic index (MI), number of micronuclei / 1000 cells and % chromosomal aberrations revealing the genotoxic potential of TiO2-np in *Allium cepa* roots as analyzed by *Allium* test and *Allium* anaphase - telophase chromosome aberration assay; * significant at $P \leq 0.05$

Table 11: Mitotic index (MI), % chromosomal aberrations, number of micronuclei/1000 cells (MN/1000 cells) and binucleate cells/1000 cells (BN/1000 cells) revealing the genotoxic potential of ZnO-np in *Allium cepa* and *Vicia faba* roots; * significant at $P \leq 0.05$

Table 12: Chromosomal aberrations in mice bone marrow cells following treatment with different doses of ZnO-np

Table 13: DNA damage determined by the bone marrow micronucleus assay in Swiss albino male mice. exposed to different concentrations of ZnO-np

Table 14: Summary of results obtained from the present study