Contents

1. INTRODUCTION
1.1. Diabetes mellitus - a historical perspective 1-2
1.2. Definition, classification, complications and biochemical basis for pathogenesis of diabetes mellitus
 1.2.1. Definition of diabetes mellitus 3-3
 1.2.2. Classification of diabetes mellitus 3-7
 1.2.3. Common complications of diabetes mellitus 8-8
 1.2.4. Biochemical basis for pathogenesis of diabetes mellitus 9-12
1.3. Hemoglobin and its nonenzymatic glycation
 1.3.1. Hemoglobin - a brief review on structure and function 13-18
 1.3.2. Nonenzymatic glycation of hemoglobin 18-20
 1.3.3. Properties of glycated hemoglobin 20-22
1.4. Oxidative stress and free radical injuries in diabetes mellitus
 1.4.1. Free radicals and reactive oxygen species 23-23
 1.4.2. Antioxidant enzymes and antioxidants 24-25
 1.4.3. Oxidative stress in diabetes mellitus 25-27
1.5. Heme iron
 1.5.1. Heme iron - an oxidant 'Trojan Horse' in biological system 28-30
 1.5.2. Hemoglobin - a large reservoir of iron 30-31
1.6. Trifluoperazine - a brief review 32-33
2. AIM AND SCOPE OF THE WORK 34-37
3. MATERIALS AND METHODS
 3.1. Materials 38-38
 3.2. Methods
 3.2.1. Preparation and purification of hemoglobin 39-40
 3.2.2. In vitro glycation of hemoglobin 40-40
 3.2.3. Estimation of ferrozine detected iron from hemoglobin 41-41
3.2.4. Isolation of fractions of glycated hemoglobin from hemolysate of diabetic patients

3.2.5. Thiobarbituric acid test

3.2.6. Estimation of iron released from \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \) in presence of \(\text{H}_2\text{O}_2 \)

3.2.7. \(\text{H}_2\text{O}_2 \)-mediated lipid peroxidation by \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \)

3.2.8. \(\text{H}_2\text{O}_2 \)-mediated deoxyribose degradation by \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \)

3.2.9. Stability of heme-globin linkage in \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \)

3.2.10. Peroxidase activities of \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \)

3.2.11(a). Auto-oxidation of \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \)

3.2.11(b). Cooxidation of \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \) with nitroblue tetrazolium

3.2.12. Thermal denaturation of \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \)

3.2.13. Spectrofluorometric tryptophan quenching titration using acrylamide as a neutral quencher

3.2.14. Preparation of trifluoperazine (TFZ) and its absorption spectrum

3.2.15. Trifluoperazine-hemoglobin binding studies using fluorescence quenching titration

3.2.16. Spectrophotometric studies of drug protein interaction (difference spectroscopy)

3.2.17. TFZ-induced oxygen release from \(\text{HbA}_0 \) and \(\text{HbA}_{1c} \)

3.2.18(a). Heme loss due to TFZ-hemoglobin interaction: Identification by gel filtration

3.2.18(b). Heme loss due to TFZ-hemoglobin interaction: Identification by SDS-PAGE with heme staining

3.2.19. Circular dichroism experiments

3.2.20. Microscopic studied on the effect of TFZ on erythrocytes isolated from normal individuals and diabetic patients

3.2.21. TFZ-induced oxygen release from erythrocytes isolated from normal individuals and diabetic patients

3.2.22. TFZ-induced hemolysis of erythrocytes
3.2.23. Determination of haptoglobin in plasma isolated from normal individuals and diabetic patients 58-58

4. RESULTS AND DISCUSSION

4.1. Biochemical and biophysical studies on structural and functional aspects of nonglycated (HbA0) and glycated (HbA1c) hemoglobin 59-59

4.1.1. A comparative study on free iron levels (ferrozine detected) in hemoglobin isolated from diabetic patients and normoglycemic human subjects 59-61

4.1.2. Hydrogen peroxide-induced iron release from HbA0 and HbA1c 61-63

4.1.3. H2O2-mediated HbA0/HbA1c-catalysed lipid peroxidation and deoxyribose degradation 63-67

4.1.4. Peroxidase activities of HbA0 and HbA1c 67-68

4.1.5. Studies on stability of heme-globin linkage of HbA0 and HbA1c 68-69

4.1.6. Oxidation of HbA0 and HbA1c (auto-oxidation and cooxidation with nitroblue tetrazolium) 69-71

4.1.7. Studied on thermal denaturation of HbA0 and HbA1c 71-72

4.1.8. Spectrofluorometric tryptophan quenching titration using acrylamide as neutral quencher 72-73

4.1.9. Circular dichroic spectral analysis of HbA0 and HbA1c 74-75

4.2. Comparative study on the interaction of trifluoperazine with nonglycated (HbA0) and glycated (HbA1c) hemoglobin 76-77

4.2.1. Fluorescence experiments on the interaction of HbA0 and HbA1c with TFZ

4.2.1(a). Relative fluorescence spectra of HbA0 and HbA1c in the presence of TFZ 77-77

4.2.1(b). Estimation binding affinity constant (K) for TFZ interaction with HbA0 and HbA1c 78-78

4.2.1(c). Estimation of possible number of binding sites (p) for interaction of TFZ with HbA0 and HbA1c 78-79
4.2.1(d). Hill-plot of the interaction of TFZ with HbA₀ and HbA₁c

4.2.1(e). Effect of different NaCl molarity on the binding of TFZ with HbA₀ and HbA₁c

4.2.2. Differential spectrophotometric titration of HbA₀ and HbA₁c with TFZ

4.2.3(a). Heme loss due to TFZ-hemoglobin interaction: Identification by gel filtration

4.2.3(b). Heme loss due to TFZ-hemoglobin interaction: Identification by SDS-PAGE with heme staining

4.2.4. Oxygraph experiments of TFZ-hemoglobin interaction

4.2.5. Circular dichroic studies on the interaction of HbA₀ and HbA₁c with TFZ

4.3. Comparative studies on the effect of TFZ on diabetic and normoglycemic erythrocytes

4.3.1(a). Morphology of erythrocytes isolated from normal individuals and diabetic patients

4.3.1(b). Effect of TFZ on morphology of erythrocytes isolated from normal individuals and diabetic patients

4.3.2. Hemolytic effect of TFZ on erythrocytes

4.3.2. Oxygraph experiments to study oxygen release from erythrocytes

4.3.3. Plasma haptoglobin levels in normal individuals and diabetic patients

SUMMARY AND CONCLUSION

REFERENCE

LIST OF PUBLICATIONS