STUDY OF PHYSICAL PROPERTIES OF MIXED POLYMER SOLUTIONS BY ULTRASONICS.

CONTENTS.

CHAPTER. 1

GENERAL REVIEW.

1.1 Introduction.
1.2 Physical properties and molecular interactions.
1.3 Importance of polymers.
1.4 Polymer and solvent.
1.5 Intermolecular forces.
References.

CHAPTER. 2

LITERATURE REVIEW AND THE NATURE OF PRESENT INVESTIGATIONS.

2.1 Review of work done on ultrasonic.
2.2 Review of work done on viscosity.
2.3 Review of work done on dielectrics.
2.4 Aim of the present work.
2.5 Choice of polymer systems and choice of solvent.
2.6 Nature of the present work.
References.

CHAPTER. 3

THEORETICAL CONSIDERATIONS.

3.1 Ultrasonic velocity and a related parameters.
3.1 Viscosity and related parameters.
3.3 Dielectrics.
References.
CHAPTER 4

TECHNIQUES OF MEASUREMENTS.

4.1 Techniques for measurement of ultrasonic velocity.
 (a) Optical method.
 (b) Pulse method.
 (c) Other Modified pulse technique.
 (d) Interferometer method.
 (e) Other techniques for velocity measurements.

4.2 Description of Interferometer.

4.3 Techniques for viscosity and density measurements.

4.4 Techniques for measurement of dielectric constant.

4.5 Sample preparation.

4.6 Experimental measurements of ultrasonic velocity, viscosity, density and dielectric constant.
 (a) Ultrasonic velocity measurements.
 (b) Viscosity and density measurements.
 (c) Dielectric constant measurements.
 (i) Cylindrical condenser.
 (ii) Correction factor for glass spacers.
 (iii) Dielectric constant of polymer solutions.

4.7 List of sample pairs (in THF) studied in the present work.

References.

CHAPTER 5

OBSERVATION TABLES AND FIGURES.

(i) Table 5.01 to 5.20
 Values of weight fraction of PVC, density ultrasonic velocity, adiabatic compressibility, viscosity, relaxation time and classical absorption coefficient at 2MHz.

(ii) Table 5.21 to 5.40
 Values of weight fraction of PVC, ultrasonic velocity, adiabatic compressibility, viscosity, relaxation time and classical absorption coefficient at frequency 5MHz.

(iii) Table 5.41 to 5.60
 Values of weight fraction of PVC, ultrasonic velocity, adiabatic compressibility, viscosity, relaxation time and classical absorption coefficient at frequency 6MHz.
(iv) Table 5.61 to 5.80
Values of weight fraction of PVC, ultrasonic velocity, adiabatic compressibility, viscosity, relaxation time and classical absorption coefficient at frequency 7MHz.

(v) Table 5.81 to 5.92
Values of weight fraction of PVC, dielectric constant and excess dielectric constant at 1MHz.

Figures 5.01 to 5.80
Graphs of ultrasonic velocity and adiabatic compressibility vs. weight fractions of PVC at frequency 2, 5, 6 and 7MHz.

Figures 5.81 to 5.84
Graphs of viscosity vs weight fraction of PVC for frequency.

Figures 5.85 to 5.100
Graphs of viscous relaxation time vs weight fraction of PVC at 2, 5, 6, and 7MHz.

Figures 5.101 to 5.116
Graphs of classical absorption coefficient vs. weight fraction of PVC at 2, 5, 6, and 7MHz.

Figures 5.117 to 5.136
Graphs of variation of velocity with frequency.

Figures 5.137 to 5.140
Graphs of dielectric constant vs weight fraction of PVC.

Figures 5.141 to 5.145
Graphs of excess dielectric constant vs. weight fraction of PVC.

CHAPTER 6

DISCUSSION OF RESULTS.

6.1 Ultrasonic velocity and adiabatic compressibility.
 6.1.1 Concentration dependence of ultrasonic velocity and adiabatic compressibility.
 6.1.2 Effect of frequency and temperature of ultrasonic velocity.

6.2 Compatibility of the components of the polymeric samples.

6.3 Viscosity.
 6.3.1 Temperature dependence of viscosity.
6.3.2 Concentration dependence of viscosity,

6.4 Relaxation Time.
 6.4.1 Dependence of relaxation time on concentration.
 6.4.2 Temperature dependence of relaxation time.

6.5 Classical absorption coefficient.

6.6 Dielectric constant and excess dielectric constant.
 6.6.1 Dependence of dielectric constant on concentration.
 6.6.2 Excess dielectric constant and extent of interaction.
 6.6.3 Temperature dependence of dielectric constant.

6.7 Tail Piece.

CHAPTER 7

RESUME. 233

APPENDIX 234

Biodata

Research Publications.