CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Details</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>NOTATIONS</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Generation of Pond Ash</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Scenario of Coal Ash in India</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Details of Thermal Power Stations – Sources of Pond Ash</td>
<td>3</td>
</tr>
<tr>
<td>1.4.1</td>
<td>RTPS - Raichur Thermal Power Station</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2</td>
<td>BTPS - Bellary Thermal Power Station</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3</td>
<td>MTPS - Mettur Thermal Power Station</td>
<td>7</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Summary of Utilisation of Fly Ash</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Present Work</td>
<td>7</td>
</tr>
<tr>
<td>2.0</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Properties of Pond Ash / Fly Ash</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Physical and Chemical Characteristics of Fly Ash</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Mineralogical Composition</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Morphology studies of Fly Ash</td>
<td>12</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Classification of Fly Ash</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Properties of Fresh Concrete – Replacement of Coal Ash for Cement and Fine Aggregate</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Hardened Properties of Pond Ash Replaced Concrete</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Effect of Replacement of Sand by Pond Ash on Density of Concrete.</td>
<td>15</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Effect of Replacement of Sand by Pond Ash on Strength Characteristics</td>
<td>17</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Compressive Strength</td>
<td>17</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Flexural Strength and Split Tensile Strength</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Effect of Replacement of Sand by Pond Ash on Durability Parameters</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Sustainability Issues of Coal Ash</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Studies on Mortar</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Studies on Self Compacting Concrete</td>
<td>25</td>
</tr>
</tbody>
</table>
3.0 AIM AND SCOPE OF THE PRESENT INVESTIGATION 28
3.1 Introduction 28
3.2 Need for Present Study 28
3.3 Aim and Objectives of the Investigation 29
3.4 Methodology 30
3.5 Parameters Considered for the Study 31
 3.5.1 General Parameters 31
 a. Sources of Pond Ash 31
 b. Water 31
 c. Cement / Cementitious Content 31
 d. Fine Aggregates 32
 e. Coarse Aggregates 32
 f. Admixture Dosage 32
 3.5.2 Specific Parameters 32
 a. Replacement levels of Fine Aggregates 32
 b. Assessment of Fresh Properties 33
 c. Curing Period 33
 d. Assessment of Hardened Properties 33
3.6 Organisation of Thesis 34
4.0 MATERIAL CHARACTERISATION AND MIX PROPORTIONING 35
4.1 Introduction 35
4.2 Materials Used for the Investigation 35
4.3 Characterization of Materials 35
 4.3.1 Cement & Cementitious Materials 35
 4.3.2 Water 39
 4.3.3 Admixture 39
 4.3.4 Coarse Aggregates 40
 4.3.5 Fine Aggregate 40
 a. Natural River Sand 41
 b. Pond Ash 43
 c. Manufactured Sand 44
4.4 Mix Proportioning 47
 4.4.1 Specimen Calculation – M30 Grade Concrete 47
 a. Parameters for mix design M30 47
 b. Mix Design 48
 c. Mix Calculations 48
 4.4.2 Summary of Design Mixes 49
4.5 SCC Mix Design 51
 4.5.1 Specimen Calculation – Cementitious Content – 600kg/m³ 51
 a. Parameters 51
 i. Constant parameters 51
5.0 CHARACTERISATION OF POND ASH FROM DIFFERENT SOURCES AND IDENTIFICATION OF BEST SOURCE

5.1 Introduction
5.2 Characterization of Pond Ash from Three Sources

5.2.1 Physical Properties
5.2.2 Chemical Properties
5.2.3 Mineralogical Composition of Pond Ash
5.2.4 Morphological Composition of Pond Ash
5.2.5 Grain Size Distribution of Pond Ash – Sand Mixtures
5.2.6 Inference on the Properties of Pond Ash from Different Sources

5.3 Pond Ash from three Sources in Concrete

5.3.1 Workability of Concrete - Slump Test
5.3.2 Observations

5.4 Study on Properties of Hardened PRC Mixes with Pond Ash from Three Different Sources

5.4.1 Compressive Strength Test

5.4.1.1 Compressive Strength Test Results – Pond Ash from RTPS
5.4.1.2 Compressive Strength Test Results – Pond Ash from BTPS
5.4.1.3 Compressive Strength Test Results - MTPS

5.4.2 Compressive Strength Behaviour of PRC mixes with Pond Ash from Different Sources

5.5 Properties of Hardened Concrete – Flexural Strength

5.5.1 Inferences on results _ Flexural Strength Behaviour

5.6 Properties of Hardened Concrete – Split Tensile Strength

5.6.1 Split Tensile Strength behaviour of PRC mixes with Pond Ash from Different Sources

5.7 Comparison of Properties of Pond Ash from Three Different Sources - Summary

5.8 Detailed Characterization of Pond Ash from RTPS

5.8.1 Sampling of Pond Ash from RTPS
5.8.2 Characterisation of Pond Ash from Different Pits

5.8.3 Physical Characteristics

5.8.3.1 Specific Gravity
5.8.3.2 Loose Bulk Density (LBD) and Rodded Bulk Density (RBD)
5.8.3.3 Water Absorption of Pond Ash
5.8.3.4 Fineness
5.8.3.5 Particle Size Distribution and Aggregate Grading
5.8.3.6 Fineness Modulus
5.8.3.7 Loss of Ignition (LOI) and Lime Reactivity
6.0 INVESTIGATION ON USE OF POND ASH IN CEMENT MORTAR 102

6.1 Introduction 102

6.2 Definition of Terms 102

6.3 Characterization of Materials 103

6.3.1 Cement 103

6.3.2 Water 103

6.3.3 Fine Aggregates 104

6.3.4 Admixture 104

6.3.5 Brick 104

6.3.6 Tests on Bricks 105

 a) Dimensional Test for Bricks 105
 b) Weight of Bricks 105
 c) Water Absorption Test of Bricks 105
 d) Initial Rate of Absorption of Bricks 106
 e) Compressive Strength 106
 f) Efflorescence or Presence of Soluble Salts 106
 g) The Modulus of Elasticity (E) of Bricks 107

6.4 Grades of Cement Mortar 108

6.5 Assessment of Properties of Cement Mortar 110

6.5.1 Properties of Fresh Mortar - Flow Table Test 110

6.5.2 Workability of Cement Mortar 114

6.6 Properties of Hardened Mortar 114

6.6.1 Compressive Strength 115

6.6.2 Modulus of Elasticity of Mortar Prisms 118

6.6.3 Inferences on Test Results 121

 Compressive Strength and Modulus of Elasticity of Cement Mortar Cubes 121

6.7 Properties of Masonry Prisms made using Different Grades of Mortar 122

6.7.1 Compressive Strength, Modulus of Elasticity and Shear Bond Strength of Masonry Prism 122

 6.7.1.1 Compressive Strength and Modulus of Elasticity 122
 6.7.1.2 Shear Bond Strength 124
 6.7.1.3 Behaviour of Masonry Prism made with PRCM of Different Grades 128

7.0 FRESH AND HARDENED PROPERTIES OF POND ASH CONCRETE 130

7.1 General 130

7.2 Fresh properties of PRC Mixes 130

7.3 Strength Behaviour of Hardened Pond Ash Concrete 131

7.3.1 Compressive Strength 131

 7.3.1.1 Compressive Strength Test 131
 7.3.1.2 Effect of Replacement Levels on the Compressive Strength of PRC mixes 131
7.3.1.3 Effect of Curing period on the compressive strength of PRC Mixes 137
7.3.1.4 Observations on Fractured Pattern 140
7.3.2 Flexural Strength 141
7.3.2.1 Observations on Flexural Strength of Pond Ash Concrete 142
7.3.3 Split Tensile Strength 144
7.3.3.1 Observations on Split Tensile Strength of Pond Ash Concrete 145
7.4 Modulus of Elasticity 147
7.4.1 Discussions on Results – Modulus of Elasticity 150
7.5 Durability Parameters of Hardened Concrete 152
7.5.1 Rapid Chloride ion Penetration Test 152
7.5.1.1 Observations on Test Results of RCPT of Pond Ash Replaced Concrete 155
7.5.2 Initial Surface Absorption Test 157
7.5.2.1 Observations on Test Results of Initial Surface Absorption Test 159
7.5.3 Sorptivity Test 160
7.5.3.1 Observations on Sorptivity Test 163

8.0 INVESTIGATION ON SCC WITH POND ASH AS FINE AGGREGATE 164
8.1 General 164
8.2 Rheological Behaviour of Pond Ash SCC 165
8.2.1 Rheological Tests conducted and their Specifications 165
8.2.2 Test Results 168
8.2.3 Inferences on Rheological Properties of SCC Mixes. 173
8.3 Strength Behaviour of PRSCC 174
8.3.1 Compressive Strength 174
8.3.1.1 Compressive Strength Behaviour of PRSCC mixes 180
8.3.2 Flexural Strength 182
8.3.2.1 Flexural Strength Behaviour of PRSCC mixes 184
8.3.3 Split Tensile Strength 184
8.3.3.1 Split Tensile Strength Behaviour of PRSCC mixes 187
8.3.4 Bond Strength 188
8.3.4.1 Observations and Discussions 192
8.4 Modulus of Elasticity 193
8.4.1 Inferences on Results of Modulus of Elasticity 195
8.5 Non Destructive Testing (NDT) Methods of Evaluation 196
8.5.1 Rebound Hammer Test 196
8.5.2 Ultra-sonic Pulse Velocity Test 197
8.5.3 Discussions on test results of Rebound Hammer Test 198
8.5.4 Discussions on Ultrasonic Pulse Velocity Tests Results 199
8.6 Durability Parameters of Hardened SCC 199
8.6.1 Rapid Chloride Ion Permeability (RCPT) of PRSCC Mixes 199
8.6.1.1 Observations on RCPT Results of PRSCC Mixes 201
8.6.2 Sorptivity of PRSCC Mixes 202
8.6.2.1 Observations on Results of Sorptivity of PRSCC Mixes 205
8.6.3 Permeability of PRSCC (Water Permeability) 206
8.6.3.1 Discussions on Results of Water Permeability of PRSCC Mixes 207

9.0 SUMMARY AND CONCLUSIONS

9.1 Introduction 209

9.2 Summary of Work Done 209

9.3 Conclusions 210

9.3.1 Pond ash from Three Different Sources and Identification of Best Source 210

9.3.2 Workability Pond Ash Replaced Mortar, Concrete and SCC 211

9.3.2.1 Pond Ash Replaced Mortar 211

9.3.2.2 Pond Ash Replaced Concrete and PRSCC 212

9.3.3 Pond Ash Replaced Cement Mortar – Strength Properties and Modulus of Elasticity of PRCM and that of Brick Masonry Triplets made using PRCM 213

9.3.3.1 Pond Ash Replaced Cement Mortar 213

9.3.3.2 Masonry Prism with PRCM 213

9.3.4 Hardened Properties of Pond Ash Replaced Concrete 214

9.3.4.1 Strength Characteristics 214

9.3.4.2 Durability Behaviour 215

9.3.5 Hardened Properties of Pond Ash Replaced SCC 215

9.3.5.1 Strength characteristics 215

9.3.5.2 Durability Behaviour 216

RECOMMENDATIONS 217

SCOPE FOR FUTURE RESEARCH 218

RESEARCH PUBLICATIONS 219
ABBREVIATIONS AND NOTATIONS

ASTM American Standards for Testing of Materials
Avg. Average
BTPS Bellary Thermal Power Station
BS British Standards
C w/c ratio
C Carbon
CA Coarse Aggregate
CC Cement Content for Concrete
CC Cement Content for SCC
CCRs Coal Combustion Residues
Cum Cubic Meter
CR1, CR2 Strength Ratios
CR1 compression strength of PRC at particular RL, at a particular age corresponding compressive strength of NC at the same age
CR2 compression strength of PRC at particular age 28day compressive strength of PRC Mix
E Modulus of Elasticity
FA Fine Aggregate
fck' Target Mean Strength
fck Compressive Strength of Concrete at 28 day Curing Period
fb Flexural Strength of Concrete
f Split Tensile Strength
FM Fineness Modulus
ISAT Initial Surface Absorption Test
KPCL Karnataka Power Corporation Ltd.
LBD Loose Bulk Density
LOI Loss Of Ignition
LR Lime Reactivity
μm Micro Meter
MTPS Mettur Thermal Power Station
MU Million Unit
MW Mega Watt
MoEF Ministry of Environment and Forest
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>NC</td>
<td>Normal Concrete</td>
</tr>
<tr>
<td>NCM</td>
<td>Normal Cement Mortar</td>
</tr>
<tr>
<td>NDE</td>
<td>Non Destructive Evaluation</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
</tr>
<tr>
<td>PA</td>
<td>Pond Ash</td>
</tr>
<tr>
<td>PFA</td>
<td>Pulverized Fuel Ash</td>
</tr>
<tr>
<td>PRC</td>
<td>Pond Ash Replaced Concrete</td>
</tr>
<tr>
<td>PRCM</td>
<td>Pond Ash Replaced Cement Mortar</td>
</tr>
<tr>
<td>PRSCC</td>
<td>Pond Ash Replaced Self Compacting Concrete</td>
</tr>
<tr>
<td>RBD</td>
<td>Rodded Bulk Density</td>
</tr>
<tr>
<td>RCIP</td>
<td>Rapid Chloride Ion Permeability</td>
</tr>
<tr>
<td>RCPT</td>
<td>Rapid Chloride Ion Penetration Test</td>
</tr>
<tr>
<td>RHT</td>
<td>Rebound Hammer Test</td>
</tr>
<tr>
<td>RL</td>
<td>Replacement Level of Sand by Pond Ash</td>
</tr>
<tr>
<td>RTPS</td>
<td>Raichur Thermal Power Station</td>
</tr>
<tr>
<td>SCC</td>
<td>Self Compacting Concrete</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>Sp.gr</td>
<td>Specific Gravity</td>
</tr>
<tr>
<td>UPV</td>
<td>Ultrasonic Pulse Velocity</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>W</td>
<td>Wattage</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>Table No.</td>
<td>Details</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Physical Properties of Cement – OPC 43 and 53 Grade</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Chemical Properties of Cement - OPC 43 Grade</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Chemical Properties of Cement – OPC 53 Grade</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Physical Properties of Fly Ash</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Analysis of Mixing Water</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Uniformity Tests on PCE based Superplasticizer (for SCC)</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Zonal Specification as per IS 383 1970 for C.A</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Sieve Analysis of C.A. Table 4.9 Physical Properties of CA</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Physical Properties of Fine Aggregate - Sand</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Zonation as per IS 383 1970 for FA</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Zonal Specification as per IS 383 1970 for F.A.</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Physical Properties of Fine Aggregate - M Sand</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Zonation as per IS 383 1970 for F.A - M Sand</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>LBD and RBD of M Sand and Pond Ash Mixes</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Sieve Analysis of Sand and Pond Ash Mixes</td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Continuation…Sieve Analysis of Sand and Pond Ash Mixes</td>
</tr>
<tr>
<td>Table 4.17</td>
<td>Design Mix per m³ of Concrete – Cement Content – 350 kg/m³</td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Design Mix per m³ of Concrete – 375 kg/m³</td>
</tr>
<tr>
<td>Table 4.19</td>
<td>Design Mix per m³ of Concrete – 415 kg/m³</td>
</tr>
<tr>
<td>Table 4.20</td>
<td>Design Mix by weight in (kg/ m³) of Concrete</td>
</tr>
<tr>
<td>Table 4.21</td>
<td>Design Mixes of Normal SCC</td>
</tr>
<tr>
<td>Table 4.22</td>
<td>Design Mixes of PRSCC</td>
</tr>
<tr>
<td>Table 4.23</td>
<td>Design Mixes of PRSCC continued….</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Physical Properties of Pond Ash from Different Sources</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Physical Properties of Pond Ash from Different Sources</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Chemical Properties of Pond Ash from Different Sources</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Bulk Density and Specific gravity of Sand: Pond Ash mixes at different replacement levels</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Workability of PRC and NC Mixes with Pond Ash from Different Sources</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Compressive Strength Test Results - RTPS @ 350 kg/m³</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Compressive Strength Test Results - RTPS @ 375 kg/m³</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Compressive Strength Test Results - RTPS@ 415 kg/m³</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>Compressive Strength Test Results - BTPS @ 350 kg/m³</td>
</tr>
<tr>
<td>Table 5.10</td>
<td>Compressive Strength Test Results - BTPS @ 375 kg/m³</td>
</tr>
<tr>
<td>Table 5.11</td>
<td>Compressive Strength Test Results – BTPS @ 415 kg/m³</td>
</tr>
</tbody>
</table>
Table 7.4 Strength Ratio (CR₂) of PRC Mixes for Different Cement Contents at Different RLs.

Table 7.5 Flexural Strength of Different FRC and NC Mixes

Table 7.6 Split Tensile Strength of PRC and NC mixes

Table 7.7 Ratio of (fₚ/fₚ₀) and (fₚ/фₖ) of PRC and NC mixes

Table 7.8 Typical Readings of Modulus of Elasticity Test on PRC Specimen

Table 7.9 Modulus Elasticity of PRC and NC mixes at Different Cement Contents

Table 7.10 Requirements of RCP as per ASTM C 1202-97

Table 7.11 RCPT Test Typical Results – at 375 kg/m³

Table 7.12 RCPT Test Results – Summary of Result

Table 7.13 Determination of Period of Movement (BS 1881, Part-5)

Table 7.14 Result of ISAT – NC and PRC specimens – 350kg/m³

Table 7.15 Result of ISAT – NC and PRC specimens – 375kg/m³

Table 7.16 Result of ISAT – NC and PRC specimens – 415 kg/m³

Table 7.17 Typical data of Sorptivity Values of NC & PRC Mixes - 350 kg/m³

Table 7.18 Comprehensive Sorptivity values for PRC and NC mixes at 6Hr. and 8 day for different cement contents.

Table 7.19 Rheological Properties of SCC mixes - 400 kg/m³

Table 7.20 Rheological Properties of SCC mixes - 500 kg/m³

Table 7.21 Rheological Properties of SCC mixes – 600 kg/m³

Table 7.22 Compressive Strength of PRSCC and NSCC mixes

Table 7.23 Flexural Strength of SCC Mixes for Different Cementitious Contents

Table 7.24 Split tensile Strength (fₚ) and comparison with fₚ₀, fck of PRSCC and NSCC Mixes at Different Cementitious Contents

Table 7.25 Comparison of Strength Characteristics of SCC mixes at different Replacement Levels

Table 7.26 Bond test results of PRSCC and NSCC mixes for CTD bar.

Table 7.27 Bond Strength of PRSCC and NSCC mixes

Table 7.28 Typical Test Readings Recorded for E of specimen - 4PRS5/5

Table 7.29 Modulus of Elasticity of PRSCC and NSCC Specimens

Table 7.30 Rebound Hammer Test Results

Table 7.31 Quality Grading Chart

Table 7.32 Ultra-sonic pulse velocity test results

Table 7.33 Results of RCP Test - PRSCC and NSCC Specimens

Table 7.34 RCPT Test Results – Summary

Table 7.35 Sorptivity Test Results - Typical Readings – 5PRS8/2

Table 7.36 Sorptivity Test – Results of PRSCC and NSCC specimens
Table 8.19 Water Absorption of Specimens of Different Mixes at 6 Hr. and 8 day 204
Table 8.20 Depth of Penetration of Water for Different mixes 206
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Details</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.1.1</td>
<td>View of Automation of Operation Raichur Thermal Power Station</td>
<td>4</td>
</tr>
<tr>
<td>Fig.1.2</td>
<td>A view of Thermal Power Station - Raichur</td>
<td>5</td>
</tr>
<tr>
<td>Fig.4.1</td>
<td>Sample of Cement</td>
<td>37</td>
</tr>
<tr>
<td>Fig.4.2</td>
<td>XRD Image of Fly Ash – RTPS</td>
<td>38</td>
</tr>
<tr>
<td>Fig.4.3</td>
<td>SEM Images of Fly Ash at Different Magnifications – Sample RTPS</td>
<td>38</td>
</tr>
<tr>
<td>Fig.4.4</td>
<td>SEM Images of Fly Ash at Different Magnifications – Sample RTPS</td>
<td>38</td>
</tr>
<tr>
<td>Fig.4.5</td>
<td>Coarse Aggregate sample collection</td>
<td>41</td>
</tr>
<tr>
<td>Fig.4.6</td>
<td>Particle Size Distribution Curve – Sand</td>
<td>42</td>
</tr>
<tr>
<td>Fig.4.7</td>
<td>Ash Pond II – RTPS</td>
<td>43</td>
</tr>
<tr>
<td>Fig.4.8</td>
<td>Pond Ash - Collection of Sample from Ash Pond</td>
<td>43</td>
</tr>
<tr>
<td>Fig.4.9</td>
<td>Particle Size Distribution Curve – M Sand</td>
<td>45</td>
</tr>
<tr>
<td>Fig 4.10</td>
<td>Fine Aggregates - Natural River sand and Manufactured Sand</td>
<td>45</td>
</tr>
<tr>
<td>Fig 4.11</td>
<td>Effect of Replacement of M Sand with Pond ash on LBD and RBD</td>
<td>46</td>
</tr>
<tr>
<td>Fig.4.12</td>
<td>Particle Size Distribution Curve – M Sand and Pond Ash Mixes</td>
<td>47</td>
</tr>
<tr>
<td>Fig 5.1</td>
<td>Mettur Thermal Power Station (MTPS) – Entrance and Ash Pond - MTPS</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Entrance – MTPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Ash Pond</td>
<td>55</td>
</tr>
<tr>
<td>Fig 5.2</td>
<td>Samples of Pond Ash from the Three Sources</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(a) Pond Ash from RTPS</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(b) Pond Ash from BTPS</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(c) Pond Ash from MTPS</td>
<td>55</td>
</tr>
<tr>
<td>Fig 5.3</td>
<td>Comparison of Physical Properties of Pond Ash</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>a. Fineness – By Blains Permeability</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>b. Residue - 45µm Sieve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Soundness by Autoclave Test</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>d. Specific Gravity</td>
<td></td>
</tr>
<tr>
<td>Fig 5.4</td>
<td>Particle Size Distribution Curves for Pond Ash from Three Different Sources, Sand and M Sand</td>
<td>57</td>
</tr>
<tr>
<td>Fig 5.5</td>
<td>Comparison of Chemical Properties of Pond Ash from RTPS, BTPS and MTPS</td>
<td>58</td>
</tr>
<tr>
<td>Fig 5.6</td>
<td>Results of XRD Analysis of Pond Ash from Three Different Sources</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>a) XRD Graph – Pond Ash – RTPS</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>b) XRD Graph – Pond Ash - BTPS</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>c) XRD Graph – Pond Ash - MTPS</td>
<td>60</td>
</tr>
<tr>
<td>Fig 5.7</td>
<td>SEM Analysis – Pond Ash RTPS at Different Magnifications</td>
<td>62</td>
</tr>
<tr>
<td>Fig 5.8</td>
<td>SEM Analysis – Pond Ash BTPS at Different Magnifications</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Page left blank unintentionally</td>
<td>64</td>
</tr>
<tr>
<td>Fig 5.9</td>
<td>SEM Analysis – Pond Ash MTPS at Different Magnifications</td>
<td>65</td>
</tr>
</tbody>
</table>
Fig.5.10 Comparison of Specific Gravity of Sand and Pond Ash Mixture at Different Replacement Levels for Three Different Sources 67
Fig.5.11 Comparison of LBD and RBD of Sand and Pond Ash Mixture at Different Replacement Levels for Three Different Sources 67
Fig.5.12 Slump Measurement 68
Fig.5.13 Workability of PRC and NC Mixes at Different Cement Contents – CC 70
a) CC of 350 kg/m³ 70
b) CC of 375 kg/m³ CC of 415 kg/m³ 70
Fig.5.15 Mixing and Casting of Cubes in progress – Specimens on Vibrating Table 73
Fig.5.16 Specimens being Cast – Cube Moulds with Fresh Concrete 73
Fig.5.17 Casting of Specimens - Cubes, Cylinder, Prisms 74
Fig.5.18 Curing of Specimens and Testing 74
 (a) Specimens being Cured 74
 (b) Specimen being Tested. 74
Fig.5.19 Strength of PRC and NC Mixes with Pond Ash from RTPS 75
a. f_{ck} vs. curing periods at CC of 350 kg/m³ 75
b. f_{ck} vs. RL at CC of 350 kg/m³ 75
c. f_{ck} vs. curing periods at CC of 375 kg/m³ 75
d. f_{ck} vs. RL at CC of 375 kg/m³ 75
e. f_{ck} vs. curing periods at CC of 415 kg/m³ 76
f. f_{ck} vs. RL at CC of 415 kg/m³ 76
Fig.5.20 -Strength of PRC and NC Mixes – BTPS at Different Cement Contents 77
a. f_{ck} vs. curing periods at CC of 350 kg/m³ 77
b. f_{ck} vs. RL at CC of 350 kg/m³ 77
c. f_{ck} vs. curing periods at CC of 375 kg/m³ 77
d. f_{ck} vs. RL at CC of 375 kg/m³ 77
e. f_{ck} vs. curing periods at CC of 415 kg/m³ 77
f. f_{ck} vs. RL at CC of 415 kg/ 77
Fig.5.21 Strength of PRC and NC Mixes – BTPS at Different Cement Contents 79
a. f_{ck} vs. curing periods at CC of 350 kg/m³ 79
b. f_{ck} vs. RL at CC of 350 kg/m³ 79
c. f_{ck} vs. curing periods at CC of 375 kg/m³ 79
d. f_{ck} vs. RL at CC of 375 kg/m³ 79
e. f_{ck} vs. curing periods at CC of 415 kg/m³ 79
f. f_{ck} vs. RL at CC of 415 kg/m³ 79
Fig.5.22 Normalised of Strength of PRC Mixes with Pond Ash from Different Sources and NC mixes 80
Fig.5.23 Flexural Strength Test Set-Up 83
Fig. 5.24 Flexural Strength of PRC and NC Mixes 84
Fig. 5.25 Flexural Strength of PRC and NC Mixes - \(f_b \) actual and \(f_b \) theoretical 84
Fig. 5.26 Split Tensile Strength Test Set-Up 86
Fig. 5.27 Split Tensile Strength of PRC and NC Mixes 87
Fig. 5.28 Replacement Level Based comparison of Split Tensile Strength of Mixes 87
Fig. 5.29 Ash Pond II - Wet Disposal of Ash - Outlet in the Ash Pond discharging Wet mix 89
Fig. 5.30 Ash Pond and Collection of Sample of Pond Ash 90
 (a) Lagooned Bottom Ash 90
 (b) Pond Ash Sample Pit 90
 (c) Sample Collection at Ash Pond 90
Fig. 5.31 Ash Pond I and II – RTPS Ash Pond II– Discharge Outlet – Google Images 90
 (a). Ash Pond I and II 90
 (b) Discharge Outlet – Ash Pond II 90
Fig. 5.32 Plan of Ash Pond II – RTPS with Sample Pit Locations 91
Fig. 5.33 Plan of Ash Pond II – RTPS with Sample Pit Locations 91
Fig. 5.34 Plan of Ash Pond II – RTPS with Sample Pit Locations 91
Fig. 5.35 Plan* of Ash Pond I and II with pit locations 92
Fig. 5.36 Specific Gravity - Samples from Different Pits 93
Fig. 5.37 LBD / RBD – Pond Ash Samples from Different Pits & Sand 94
Fig. 5.38 Water Absorption – Pond Ash Samples from Different Pits 96
Fig. 5.39 Particle Size Distribution Curve – Samples from Different Pits 98
Fig. 5.40 Percentage Fraction – Samples from Different Pits 99
Fig. 5.41 Fineness Modulus – Samples from Different Pits 100
Fig 6.1 Test Set Up – Modulus Elasticity of Bricks 107
Fig 6.1 Stress Strain Curve for Brick 107
Fig. 6.3 Flow Measurement of Mortar Mixes showing slight bleeding. 111
Fig. 6.4 Water Absorption of Pond Ash in NCM and PRCM mixes 113
Fig. 6.5 Workability of Different Mixes of Mortar 113
Fig. 6.6 Casting of Mortar Cubes 115
Fig. 6.7 Effect of Replacement Levels on Compressive Strength of Different Mixes 117
Fig. 6.8 Compressive Strength of NCM and PRCM mixes Different Curing Periods. 117
Fig. 6.9 Normalised Strength of NCM and PRCM mixes Different Curing Periods 117
Fig. 6.10 Typical Stress – Strain Curve 2A75 120
Fig. 6.11 E at Diff. Replacement Levels for Different Grades of Mortar 120
Fig. 6.12 Compressive Strength vs. Modulus of Elasticity for Different Mortar Mixes 120
Fig. 6.13 Specimen Preparations and Curing 123
Fig. 6.14 Masonry Prism Compressive Strength Test Setup and Failed Specimen 123
Fig 6.15 Test Setup of Shear Bond Strength – Vertical Loading
Fig 6.16 Specimen under testing - Shear Bond Strength – Vertical Loading
Fig.6.17 Typical Stress – Strain Curve - MP-3B_{50}
Fig.6.18 Compressive Strength vs. Modulus of Elasticity for different Masonry Prisms
Fig.6.19 Reduction in Strength and Effeciencies of Mixes in terms of NCM
Fig.7.1 Specimens in Different Stages Compression Test - Different Failure Modes
 (a) Curing of Specimens
 (b) Specimens Stacked just before Testing
 (c) Test Set Up – Compressive Strength Test
 (d) Failed Specimen – Bursting Failure
 (e) Failed Specimen with inclined Fracture lines
 (f) Failed Specimen with Column like Fragments
Fig.7.2 Compressive Strength Variations of PRC mixes with Different Cement Contents at Different Replacement Levels
 a) At Cement Content of 350 kg/m³
 b) At Cement Content of 375 kg/m³
 c) for Cement Content of 415kg/m³
Fig. 7.3 Normalised Strength (CR₁) of PRC Mixes with Different Cement Contents for RLS from 0 - 100%
Fig.7.4 Compressive Strength Development vs. Curing Period of PRC and NC mixes at Different Cement Contents
 a) At Cement Content of 350 kg/m³
 b) At Cement Content of 375 kg/m³
 c) for Cement Content of 415kg/m³
Fig.7.5 Normalised Strength of PRC at a particular age in terms of 28day Strength of NC Mix (CR₂) at Different Cement Contents for Different RLS form 0% - 100%.
 a) At Cement Content of 350 kg/m³
 b) At Cement Content of 375 kg/m³
 c) for Cement Content of 415kg/m³
Fig.7.6 Comparison of Strength Development of PRC and NC – Different Cement Contents
Fig.7.7 Effect of Cement Contents on the PRC mixes at Different Replacement levels
Fig.7.8 Flexural Strength of PRC and NC mixes
Fig.7.9 Split Tensile Strength Specimens
 (a) Test Set-up
 (b) Specimen when Failed
 (c) Specimen with Columnar Failure
Fig 7.10 Split Tensile Strength of different mixes
Fig.7.11 Cylindrical Specimens and E Test Set-up
 (a) Cylindrical Specimens
 (b) Test Set – up for E
Fig.7.12 Typical Stress – Strain Curve – M20-50%
Fig.7.13 Normalised Curve – E of PRC Mixes at Different RL in terms of NC Mixes
Fig.7.14 Strength vs. Modulus of Elasticity Curve for Different Cement Contents
Fig.7.15 Regression Curve for all PRC Mixes at Different RL and NC Mixes
Fig. 7.16 RCPT Test – Different Stages
- (a) Specimen in Vacuum Dessicator
- (b) Test Set-Up – Cells Filled with Solutions
- (c) RCPT Test Set up

Fig. 7.17 RCPT Results - Typical curve of Charge vs. time for CC of 375 kg/m³

Fig. 7.18 Charge in Coulomb Vs Replacement Levels of Pond ash - Summary

Fig. 7.19 Initial Surface Absorption Test
- (a) ISAT - Test Set-up
- (b) ISAT – Test in Progress

Fig. 7.20 Sorptivity Test – Different Stages
- (a) Sealing the Specimen,
- (b) Sorptivity Test Set up

Fig. 7.21 Typical Sorptivity vs. Sq.Rt. of Time curve for Different Mixes @ 375 kg/m³

Fig. 7.22 Sorptivity at 6Hr. and 8 day of Different Mixes

Fig. 7.23 Comparison of Sorptivity of Different Mixes at 6Hr. and 8 day at Different Replacement Levels

Fig. 8.1 Slump Flow Test
- (a) Test under Progress,
- (b) Slump Flow Measurement
- (c) Slight Bleeding of Mix Observed

Fig. 8.2 J Ring Test - J Ring Slump Flow Measurement

Fig. 8.3 V – Funnel Measurement

Fig. 8.4 L Box Measurement

Fig. 8.5 Slump Flow Measurements
- (a) Slump Flow at Different Replacement Levels
- (b) Slump Flow at Different Cementitious Contents

Fig. 8.6 T₉₀ Slump Measurements
- (a) T₉₀ Slump at Different Replacement Levels
- (b) T₉₀ Slump at Different Cementitious Contents

Fig. 8.7 J - Ring Dia. Measurements
- (a) J - Ring Dia at Different Replacement Levels
- (b) J - Ring Dia. at Different Cementitious Contents

Fig. 8.8 V Funnel Measurements
- (a) Flow Time at Different Replacement Levels
- (b) Flow Time at Different Cementitious Contents

Fig. 8.9 L Box Measurements
- a) Blocking Ratio at Different Replacement Levels
- b) Blocking Ratio at Different Cementitious Contents

Fig. 8.10 Specimens of PRSCC and NSCC Mixes in Fresh state

Fig. 8.11 Curing of Specimens of PRSCC and NSCC Mixes

Fig. 8.12 Compressive Strength of PRSCC and NSCC Mixes at Different Replacement Levels
- (a) Cementitious Content of 400 kg/m³
- (b) Cementitious Content of 500 kg/m³
- (c) Cementitious Content of 600 kg/m³
Fig. 8.13 Compressive Strength of PRSCC and NSCC Mixes at Different Curing Periods 178
(a) Cementitious Content of 400 kg/m3 178
(b) Cementitious Content of 500 kg/m3 178
(c) Cementitious Content of 600 kg/m3 179

Fig. 8.14 Normalised Strength Curve – Strength of PRSCC in terms 28day Strength of NSCC Mix (CR1) 179
(a) Cementitious Content of 400 kg/m3 179
(b) Cementitious Content of 500 kg/m3 179
(c) Cementitious Content of 600 kg/m3 179

Fig. 8.15 Normalised Strength Curve – Strength of PRSCC in terms 28day Strength of Corresponding Mix (CR2) 179
(a) Cementitious Content of 400 kg/m3 179
(b) Cementitious Content of 500 kg/m3 179
(c) Cementitious Content of 600 kg/m3 179

Fig. 8.16 Cube Compressive Strength at 28 day of PRSCC and NSCC Mixes at Different Cementitious Contents 180

Fig. 8.17 Flexural Strength Test Setup, Loading Pattern and failed specimen. 182
(a) Test Setup – Loading Pattern 182
(b) Specimen Under Testing 182
(c) Failed Specimen 182

Fig. 8.18 Comparison of f_b actual and Theoretical of PRSCC and NSCC Mixes 183

Fig. 8.19 Flexural Strength of PRSCC and NSCC Mixes for Different Cementitious Contents 183

Fig. 8.20 Comparison of Split Tensile Strength of PRSCC Mixes at Different RL and NSCC Mixes 185

Fig. 8.21 Bond Test Specimen Preparation in progress 189
(a) Cube Specimens Ready to Cast Reinforced with 6mm Dia. Helix 189
(b) Close up 189

Fig. 8.22 Bond Test PRSCC and NSCC Specimens 189
(a) Bond Test Specimen Fresh Concrete Specimens and 189
(b) Test Under Progress 189

Fig. 8.23 Bond Strength of PRSCC and NSCC mixes for Cementitious Content for Different slip. 191
(a) Cementitious Content of 400kg/m3 191
(b) Cementitious Content of 500kg/m3 191
(c) Cementitious Content of 600kg/m3 192

Fig. 8.24 Typical Stress – Strain Curve – 4PRSS/5 195

Fig. 8.25 Normalised Curve of Modulus of Elasticity of PRSCC and NSCC mixes for Different Cementitious Contents 195

Fig. 8.26 NDE Methods 196
(a) Rebound Hammer Test 196
(b) UPV Test with probes on opposite faces 196

Fig. 8.27 Charge Passed in Coulomb vs. Time in Sec. Curve 201
Fig.8.28	Comparison – Chloride Ion Penetration measured in C for Different Cementitious Contents	201
Fig.8.29	Typical Sorptivity Curve – Absorption Rate vs. Time curve for 5PRS8/2	203
Fig 8.30	Sorptivity Curve – Time Rate of Sorption	205
Fig 8.31	Permeability Test Set – up as per DIN 1048-1991	206
Fig 8.32	Permeability of PRSCC and NSCC Specimens at Different Replacement Levels	207