List of Figures

2.1 Transmission line system and it’s equivalent circuit 16
2.2 Example of propagation delay: Network with lossless transmission line . 19
2.3 Example of propagation delay: Transient response 19
2.4 Example of attenuation and rise-time degradation: Network with lossy transmission line .. 20
2.5 Example of attenuation and rise-time degradation: Transient response 20
2.6 Example of undershoots, overshoots, and ringing in lossless interconnects. 21
2.7 Example of ringing in lossy interconnects ... 22
2.8 Example of crosstalk ... 23
2.9 Example of dominant poles ... 28
2.10 (a) Discrete port: two wires with a source in the middle. (b) Face port: the source is distributed along the red line. 38
2.11 Port size rules of thumb for: (a) microstrip, (b) ungrounded, and (c) grounded coplanar line. ... 38
2.12 Absolute value of the electric field (represented in logarithmic scale) at a microstrip port. (a) Port size is too small; electric field has considerable magnitude at port’s border and will negatively impact on the solution’s accuracy. (b) Port size has been increased laterally and above the microstrip and fields are practically zero (green colour) at port’s border. 39
2.13 Hexahedral and tetrahedral mesh for a piece of coaxial cable. (a) The staircase mesh provides a poor description of curved surfaces, unless a very fine mesh is used. (b) Conformal boundary approximation ensures the required geometric accuracy, with a minimum of mesh cells. (c) Tetrahedral mesh generators often require a segmentation of round structures, leading to a poor geometrical approximation. ... 40
2.14 Rules of thumb for meshing planar structures with hexahedral meshes (greymetal, dusky pink-substrate). (a) Discretization of a microstrip. (b) Discretization of gaps inside a metal sheet. .. 42
2.15 Time signal examples. (a) The output signal still oscillates with relatively high amplitude at the moment when the simulation was stopped. The frequency-domain results (e.g., S-parameters) are most likely inaccurate. (b) A time signal which is sufficiently decayed when the simulation is stopped will provide accurate frequency-domain results 43
2.16 Final mesh after the adaptation process for a piece of coaxial cable. (a) Mesh adaptation without snapping on the true geometry. (b) Snapping onto the geometry during the adaptation process leads to a good approximation of the geometry and hence to more accurate results 44
3.1 Layout of LNA MMIC chip ... 51
3.2 Actual test box with LNA MMIC chip: Gold plated carrier plate is used to mount the complete assembly, Pre and post bias cards are placed in between MMIC Chip, six DC bias capacitors are mounted on bias cards, Gold ribbon wires are used to connect MMIC chip and bias cards 51
3.3 Comparison of RF on wafer and test box test results 52
3.4 A rectangular cavity resonator 54
3.5 Case A: E/H fields for unassembled cavity structure 57
3.6 Case B: Carrier plate layout and test box with carrier plate 59
3.7 Case C: Model of test box with LNA MMIC 60
3.8 S-parameters magnitude (dB) obtained using Agilent's ADS 61
3.9 S-parameters magnitude (dB) obtained using CST MWS 61
3.10 Box having CPML Boundary condition and Comparison of RFO and measured results ... 61
3.11 Comparison of results: validation of package/house effect by imposing different boundary conditions 62
3.12 MMIC chip layouts are partitioned into 3 parts for debugging the problem, Parts are made in such a way that first two parts have one active device and last one has two active devices .. 64
3.13 Single stage analysis includes only one active device: Comparison of 3D co-simulated transient field result and ADS circuit simulation result 66
3.14 Two stage analysis includes two active devices: S-parameters and E-field distribution on partitioned chip 67
3.15 Full chip analysis: Comparison with on wafer and measured results .. 68
3.16 Selection of RF absorber: Comparison of results of package/housing effect (red line), without box (only chip, purple line) and box with absorber material (blue line) ... 71
3.17 Simulation results with proposed box height(a) CST result (b) ADS result; results validate that the proposed box dimensions can be used to mitigate the cavity resonance problem .. 72
4.1 A complete proposed approach .. 74
4.2 (a) Model of single ended via connecting with two microstrip lines (b) Schematic circuit diagram of the test model; Two-port network having source and load .. 79
4.3 Y parameters of the single ended via simulated by FIT in CST MWS and Vector Fitting method. (a) Magnitude. (b) Phase 81
4.4 Transient voltage waveforms: (a) at port 1 denoted as V_{in} and at port 2 denoted as V_{out} .. 82