CONTENTS

1. OUTLINES OF THE STUDY

1.1 Introduction 1
1.2 Review of Literature 6
1.3 Description of the Study Area 9
1.4 Scope of the Present Study 13

2. MATERIALS AND METHODS

2.1 Estimations in Water

2.1.1 Determination of Suitable Preservative for HA in Water 14
2.1.2 Estimation of Humic Acids in Water 15
2.1.3 Estimation of Dissolved Oxygen in Water 15
2.1.4 Other Parameters in Water 16

2.2 Estimations in Sediments

2.2.1 Sediment Grain Size Analysis 16
2.2.2 Organic Matter in Sediments 17
2.2.3 Humic Acids in Sediments 18
2.2.4 Estimation of Cu, Fe, Mn and Co in Sediments by AAS 18
2.2.5 Estimation of Organic Carbon in Sediments 19
2.2.6 Estimation of Organic Nitrogen in Sediments 20
2.2.7 Estimation of Total Phosphorus in Sediments 20
3. RESULTS

3.1 Determination of Preservatives

3.2 Estimation of Water Parameters

3.2.1 Humic Acids
3.2.2 Salinity
3.2.3 Dissolved Oxygen
3.2.4 pH
3.2.5 Temperature

3.3 Rainfall

3.4 Estimations in Sediments

3.4.1 Humic Acid
3.4.2 Organic Matter
3.4.3 Sediment Grain Size
3.4.4 Carbon, Nitrogen and Phosphorus
3.4.5 Iron in the Sediments
3.4.6 Copper in the Sediments
3.4.7 Manganese in the Sediments
3.4.8 Cobalt in the Sediments

3.5 Statistical Relationships

4. DISCUSSION

4.1 Water and Sediment Relationships
4.2 Humic Acids
4.2.1 Humic Acids in Water

4.2.2 Humic Acids in Sediments

4.2.3 Sources, Supply and Replenishment of HA's in these Biotopes

4.3 Sediment Grain Size

4.4 Organic Matter of the Sediments

4.5 Carbon, Nitrogen and Phosphorus Content

4.5.1 Carbon in Sediments

4.5.2 Nitrogen in Sediments

4.5.3 Phosphorus in Sediments

4.5.4 C:N:P Ratio in Sediments

4.5.5 C:N:P Ratio and Productivity

4.6 Trace Metals in Sediments

4.6.1 Sources and Dynamics

4.6.2 Role and Interaction with other Environmental Parameters

4.6.3 Importance in Aquatic Systems

4.6.4 Iron in Sediments

4.6.5 Copper in Sediments

4.6.6 Manganese in Sediments

4.6.7 Cobalt in Sediments

5. CONCLUSIONS

6. RESUME

7. REFERENCES