CHAPTER 2

PRELIMINARIES
In this chapter we introduce the notation used in this thesis, present some standard results from books as well as from recent papers. Proofs are hinted for a few frequently used results.

Section 2.1.

Set theoretic symbols like \in, \subseteq, \cap, \cup, \rightarrow are freely used. Let \mathbb{R}, \mathbb{R}_+, \mathbb{Z}, \mathbb{Z}^+, \mathbb{N} are represent the set of all real, nonnegative real, integers, positive integers, nonnegative integers respectively and $\mathbb{N}(n_0) = \{n_0, n_0 + 1, n_0 + 2, \ldots\}$, where $n_0 \in \mathbb{Z}$. The m-dimensional Euclidean space is denoted by \mathbb{R}^m. Let $\mathbb{R}^{p \times q}$ denotes the space of all $p \times q$ matrices whose elements are real numbers. Unless otherwise stated vectors in \mathbb{R}^m are denoted by small Roman letters and the matrices in $\mathbb{R}^{p \times q}$ are denoted by capital Roman letters.

The transpose of a matrix ‘A’ is denoted by A^T. If ‘A’ is a nonsingular matrix, A^{-1} stands for inverse of A. The unit matrix of order ‘m’ is denoted by I_m (whose order can be specified by the context in which it occurs) and the matrix all of whose elements are zero’s is denoted by 0. Though the
symbol 0 is used in several senses, no confusion arises, since the context in which it occurs clearly indicates what it stands for.

By a $p \times q$ matrix we mean a matrix with p-rows and q-columns and an $m \times m$ matrix merely said to be of order m (or square). A matrix function $A : n \rightarrow A(n)$ is denoted by $A(n)$ or $[a_{ij}(n)]$, where $a_{ij}(n)$ stands for the i-th row j-th column element which is a function of n. A summation of a matrix A is the matrix obtained by summation of each component of A.

\[\sum_{k=r}^{s} A(k) = \left[\sum_{k=r}^{s} a_{ij}(k) \right]. \]

In the sequel, we use the following standard norms for vectors and matrices namely for $x \in \mathbb{R}^m$,

\[\|x\| = \max_i |x_i| \]

and for $A = [a_{ij}] \in \mathbb{R}^{p\times q}$,

\[|A| = \sup_{\|x\| \leq 1} \|Ax\|. \]

Definition 2.1.1. [1] A matrix P is said to be a projection if $P^2 = P$. If P is the projection, then $I - P$ is also a projection. Two such projections, whose sum is I and hence whose product is zero are said to be supplementary.

Kronecker product also known as a direct product or a tensor product is a concept having its origin in group theory and has important applications in particle physics. This technique has been successfully applied in various
fields of matrix theory.

Definition 2.1.2. [35] Let \(S \in \mathbb{R}^{p \times q} \) and \(T \in \mathbb{R}^{r \times s} \) then the Kronecker product of \(S \) and \(T \) written \(S \otimes T \) is defined to be the partitioned matrix

\[
S \otimes T = \begin{bmatrix}
 s_{11}T & s_{12}T & \cdots & s_{1q}T \\
 s_{21}T & s_{22}T & \cdots & s_{2q}T \\
 \vdots & \vdots & \ddots & \vdots \\
 s_{p1}T & s_{p2}T & \cdots & s_{pq}T
\end{bmatrix}
\]

is a \(pr \times qs \) matrix and is in \(\mathbb{R}^{pr \times qs} \).

Definition 2.1.3. [35] Let \(S = [s_{ij}] \in \mathbb{R}^{p \times q} \), then the vectorization (Vec) operator

\[
Vec : \mathbb{R}^{p \times q} \to \mathbb{R}^{pq},
\]

defined and denoted by

\[
\hat{S} = VecS = \begin{bmatrix}S_{1} \\
S_{2} \\
\vdots \\
S_{q}\end{bmatrix}, \text{ where } S_{j} = \begin{bmatrix}s_{1j} \\
s_{2j} \\
\vdots \\
s_{pj}\end{bmatrix} \quad (1 \leq j \leq q).
\]

Lemma 2.1.1. The vectorization operator \(Vec : \mathbb{R}^{m \times m} \to \mathbb{R}^{m^2} \), is a linear and bijection operator and also \(Vec \) and its inverse operator \(Vec^{-1} \) are continuous.

Proof. From the Definition 2.1.3 it is clear that the \(Vec \) operator is linear

20
and bijection. Now, for $S = [s_{ij}] \in \mathbb{R}^{m \times m}$, we have

$$\|Vec(S)\| = \max_{1 \leq i, j \leq m} \{|s_{ij}|\} \leq \max_{1 \leq i \leq m} \left\{ \sum_{j=1}^{m} |s_{ij}| \right\} = |S|.$$

It follows that the Vec operator is continuous and $\|Vec\| \leq 1$.

If $S = I_m$, then

$$\|Vec(I_m)\| = 1 = |I_m|$$

and $\|Vec\| = 1$.

The inverse of Vec operator $Vec^{-1} : \mathbb{R}^{m^2} \to \mathbb{R}^{m \times m}$, is defined as

$$Vec^{-1}(v) = \begin{bmatrix} v_1 & v_{m+1} & \ldots & v_{m^2-m+1} \\ v_2 & v_{m+2} & \ldots & v_{m^2-m+2} \\ \vdots & \vdots & \ddots & \vdots \\ v_m & v_{2m} & \ldots & v_{m^2} \end{bmatrix}.$$

Where $v = (v_1, v_2, v_3, \ldots, v_{m^2})^T \in \mathbb{R}^{m^2}$. We have

$$|Vec^{-1}(v)| = \max_{1 \leq i \leq m} \left\{ \sum_{j=0}^{m-1} |v_{mj+i}| \right\} \leq m \cdot \max_{1 \leq i \leq m} \{|v_i|\} = m \cdot \|v\|.$$

It follows that Vec^{-1} is a continuous operator. Also, if we take $v = VecS$ in the above inequality, then

$$|S| \leq m\|VecS\|, \quad \text{for every} \quad S \in \mathbb{R}^{m \times m}.$$

21
In the following lemma, we state some properties of Kronecker product and Vec operator.

Lemma 2.1.2. The following properties and rules are true, provided that the dimension of the matrices are such that the various expressions exist.

1. \((P \otimes Q)^T = P^T \otimes Q^T\).
2. \((P \otimes Q)^{-1} = P^{-1} \otimes Q^{-1}\).
3. \(|P \otimes Q| \leq |P||Q|\).
4. \(P \otimes (Q \otimes R) = (P \otimes Q) \otimes R\).
5. \(P \otimes (Q + R) = (P \otimes Q) + (P \otimes R)\).
6. \((P + Q) \otimes R = (P \otimes R) + (Q \otimes R)\).
7. \((P \otimes Q)(R \otimes S) = (PR \otimes QS)\).
8. If \(P, Q, X \in \mathbb{R}^{m \times m}\), then

 (i) \(\text{Vec}(PXQ) = (Q^T \otimes P)\text{Vec}X\),

 (ii) \(\text{Vec}(PX) = (I_m \otimes P)\text{Vec}X\),

 (iii) \(\text{Vec}(XQ) = (Q^T \otimes I_m)\text{Vec}X\).
9. There exists a zero element \(0_{mn} = 0_m \otimes 0_n\).
10. There exists a unit element \(I_{mn} = I_m \otimes I_n\).
Section 2.2.

The problem

\[y(n + 1) = A(n)y(n), \quad (2.2.1) \]

\[y(n_0) = y_0, \quad (2.2.2) \]

where \(A = [a_{ij}] \) is a nonsingular matrix of order \(m \), is called a initial value problem.

Theorem 2.2.1. \([31]\) For each \(y_0 \in \mathbb{R}^m \) and \(n_0 \in \mathbb{N} \) there exists a unique solution \(y(n, n_0, y_0) \) of the initial value problem \((2.2.1)\) with \((2.2.2)\).

Any set of \(m \)-linearly independent solutions \(y_1, y_2, \ldots, y_m \) of \((2.2.1)\) is called a fundamental set of solutions and the matrix with \(y_1, y_2, \ldots, y_m \) as its columns is called a fundamental matrix for the equation \((2.2.1)\) and is denoted by \(Y \). The fundamental matrix \(Y \) is nonsingular.

Theorem 2.2.2. \([31]\) If \(Y(n) \) is fundamental matrix of \((2.2.1)\) if and only if \(Y(n) \) satisfies \((2.2.1)\) and nonsingular.

Theorem 2.2.3. \([31]\) If \(Y \) is a fundamental matrix for the equation \((2.2.1)\), then for any constant \(n \)-vector \(c \), \(Yc \) is a solution of \((2.2.1)\) and every solution of \((2.2.1)\) is of this form.

The equation

\[y(n + 1) = A(n)y(n) + f(n), \quad (2.2.3) \]

where \(A \in \mathbb{R}^{m \times m} \) nonsingular and \(f \in \mathbb{R}^m \) is termed as a nonhomogeneous equation. If \(f = 0 \), then it is called homogeneous equation.
Theorem 2.2.4. [31] If \(y_p \) is any particular solution of the nonhomogeneous equation (2.2.3) and \(Y \) is a fundamental matrix for the corresponding homogeneous equation (2.2.1), then \(y \) defined by

\[
y = y_p + Yc
\]

is a solution of (2.2.3) for every constant \(m \)-vector \('c' \) and every solution of (2.2.3) is of this form, where

\[
y_p(n) = Y(n) \sum_{k=n_0}^{n-1} Y^{-1}(k+1)f(k)
\]

is a particular solution of (2.2.3).

Proof. Clearly \(y \) in (2.2.4) is a solution of (2.2.3). If \(u \) is any other solution of (2.2.3), then \((u - y_p)(n + 1) = A(n)(u - y_p)(n) \) so that \((u - y_p) \) is a solution of (2.2.1). Hence \(u - y_p = Yc \) or \(u = y_p + Yc \). \(\square \)

Let \(X \) be a non-empty set. If \(d \) is a metric for \(X \), then the ordered pair \((X, d)\) is called a metric space and \(d(x, y) \) is called the distance between \(x \) and \(y \).

Definition 2.2.1. [14] A metric space \((X, d)\) is said to be complete if and only if every Cauchy sequence in \(X \) has a limit point in \(X \).

Definition 2.2.2. [14] A normed linear space is a vector space over the field of real numbers or complex numbers in which a real valued function \(\|x\| \) is defined with the following properties:
(i) \((a) \|x\| \geq 0, \quad (b) \|x\| = 0 \) if and only if \(x = 0 \),

(ii) \(\|\alpha x\| = |\alpha|\|x\| \),

(iii) \(\|x_1 + x_2\| \leq \|x_1\| + \|x_2\| \).

It may be noted that \(d(x, y) = \|x - y\| \) is a metric for the space. It is called the natural metric.

Definition 2.2.3. \([14]\) A normed linear space which is complete with respect to its natural metric is called a Banach space.

Theorem 2.2.5. \([14]\) The space \(C(X) \) of all bounded real functions defined on a metric space \((X, d)\) forms a Banach space with the norm given by \(\|f\| = \sup |f(n)| \).

One of the simplest and useful tools of the nonlinear analysis is the principle of contraction mapping.

Definition 2.2.4. \([74]\) Let \(\mathbb{B} \) be a Banach space. Let \(f : \mathbb{B} \to \mathbb{B} \) be a mapping. If there exists an \(\alpha \in (0, 1) \) such that

\[
\|fx_1 - fx_2\| \leq \alpha \|x_1 - x_2\|, \quad \forall \quad x_1, x_2 \in \mathbb{B}.
\]

Then ‘\(f \)’ is called a contraction mapping and ‘\(\alpha \)’ is called contraction constant of the mapping.

It is evident that every contraction mapping is continuous.

Definition 2.2.5. \([74]\) A point \(x \) in \(\mathbb{B} \) is called a fixed point of the mapping \(f \) if \(fx = x \).
Theorem 2.2.6. [74] (Banach Fixed Point Theorem or Contraction Mapping Theorem) Every contraction mapping defined on a Banach space has one and only one fixed point.

Lemma 2.2.1. [74] (Mazur’s Lemma) Let B be a Banach space and let \(\{u_m\}_{m \in \mathbb{N}} \) be a sequence in B that converges weakly to some u_0 in B. Then there exists a function $p : \mathbb{N} \to \mathbb{N}$ and a sequence of sets of real numbers \(\{\alpha(m)_k/k = m, \ldots, p(m)\} \) such that $\alpha(m)_k \geq 0$ and $\sum_{k=m}^{p(m)} \alpha(m)_k = 1$ such that the sequence \(\{v_m\}_{m \in \mathbb{N}} \) defined by the convex combination $v_m = \sum_{k=m}^{p(m)} \alpha(m)_k u_k$ converges strongly in B to u_0.

Theorem 2.2.7. [1] (Gronwall Inequalities) Let for all $n \in \mathbb{N}(n_0)$ the following inequality be satisfied

$$u(n) \leq p(n) + q(n) \sum_{k=n_0}^{n-1} f(k)u(k).$$

Then, for all $n \in \mathbb{N}(n_0)$

$$u(n) \leq p(n) + q(n) \sum_{k=n_0}^{n-1} p(k)f(k) \prod_{\tau=k+1}^{n-1} (1 + q(\tau)f(\tau)).$$

Corollary 2.2.1. [1] Let in Theorem 2.2.7 $p(n) = p$ and $q(n) = q$ for all $n \in \mathbb{N}(n_0)$. Then, for all $n \in \mathbb{N}(n_0)$

$$u(n) \leq p \prod_{\tau=n_0}^{n-1} (1 + qf(\tau)).$$
Section 2.3.

Let the solution \(x(n) = x(n, n_0, x_0) \) of

\[
x(n + 1) = f(n, x(n))
\]

(2.3.1)

with \(x(n_0) = x_0 \) exists for all \(n \in \mathbb{N}(n_0) \).

Definition 2.3.1. A sequence \(\phi : \mathbb{N}(n_0) \to \mathbb{R}^m \) is said to be bounded on \(\mathbb{N}(n_0) \) if there exists \(M > 0 \) such that \(\|\phi(n)\| \leq M \), for all \(n \in \mathbb{N}(n_0) \).

Theorem 2.3.1. Let \(Y(n) \) be a fundamental matrix for (2.2.1). Then all solutions of (2.2.1) are bounded on \(\mathbb{N}(n_0) \) if and only if there exists a positive constant \(M \) such that

\[
|Y(n)| \leq M, \quad \text{for all } n \geq n_0 \geq 0;
\]

Now we define various concepts of stability.

Definition 2.3.2. The solution \(x(n) \) is said to stable, if for each \(\varepsilon > 0 \), there exists \(\delta = \delta(\varepsilon, n_0) > 0 \) such that any solution \(\pi(n) = x(n, n_0, \pi_0) \) of (2.3.1), the inequality \(\|\pi_0 - x_0\| < \delta \) implies \(\|\pi(n) - x(n)\| < \varepsilon \) for all \(n \in \mathbb{N}(n_0) \).

Definition 2.3.3. The solution \(x(n) \) is said to be unstable, if it is not stable.

Definition 2.3.4. The solution \(x(n) \) is said to be uniformly stable, if it is stable and \(\delta \) is independent of \(n_0 \).
Definition 2.3.5. The solution \(x(n)\) is said to be asymptotically stable, if it is stable and in addition, there exists a \(\delta = \delta(n_0) > 0\) such that for any solution \(x(n) = x(n, n_0, x_0)\) of (2.3.1), the inequality \(|x_0 - x|| < \delta\), implies \(|x(n) - x(n)| \to 0\) as \(n \to \infty\).

Now we state some results relating to stability of linear difference equation (2.2.1) for \(n \geq n_0\).

Theorem 2.3.2. All solutions of the difference system (2.2.1) are stable if and only if they are bounded on \(\mathbb{N}(n_0)\).

Theorem 2.3.3. Let \(Y(n)\) be a fundamental matrix of (2.2.1). Then

(i) the trivial solution of (2.2.1) is stable if and only if there exists a positive constant \(M\) such that

\[|Y(n)| \leq M, \text{ for all } n \geq n_0 \geq 0;\]

(ii) the trivial solution of (2.2.1) is uniformly stable if and only if there exists a positive constant \(M\) such that

\[|Y(n)Y^{-1}(k)| \leq M, \text{ for all } n_0 \leq k \leq n < \infty.\]

Theorem 2.3.4. Let \(Y(n)\) be a fundamental matrix of (2.2.1). Then, the trivial solution of (2.2.1) is asymptotically stable if and only if \(\lim_{n \to \infty} |Y(n)| = 0\).
Lemma 2.3.1. [1] Let $V(n)$ be nonsingular matrix function on $\mathbb{N}(n_0)$ and let P be a projection. If there exists a positive constant $c > 1$ such that
\[
\sum_{k=n_0}^{n-1} \|V(n)PV^{-1}(k+1)\| \leq c, \quad \text{for all } n \in \mathbb{N}(n_0),
\]
then there exists a constant c_1 such that
\[
\|V(n)P\| \leq c_1 \left(\frac{c-1}{c}\right)^{n-n_0}, \quad \text{for all } n \in \mathbb{N}(n_0).
\]

Lemma 2.3.2. [1] Let $V(n)$ be an invertible matrix which is defined on $\mathbb{N}(n_0)$ and P be a projection. If there exists a constant $c > 0$ such that
\[
\sum_{k=n}^{\infty} \|V(n)PV^{-1}(k+1)\| \leq c, \quad \text{for all } n \in \mathbb{N}(n_0),
\]
then for any vector $\xi \in \mathbb{R}^m$ such that $P\xi \neq 0$, $\limsup_{n \to \infty} \|V(n)P\xi\| = \infty$.

Consider the nonlinear difference equation
\[
y(n+1) = A(n)y(n) + f(n, y(n)), \quad (2.3.2)
\]
where $f : \mathbb{N} \to \mathbb{N} \times \mathbb{R}^m$ is the perturbed equation of the linear equation [2.2.1].

Theorem 2.3.5. [1] Let for all $(n, y) \in \mathbb{N}(n_0) \otimes \mathbb{R}^m$, the function $f(n, y(n))$ satisfy
\[
\|f(n, y(n))\| \leq h(n)\|y\|,
\]
where $h(n)$ is a non-negative function defined on $\mathbb{N}(n_0)$ and $\sum_{k=n_0}^{\infty} h(k) < \infty$.

Then, the trivial solution $y(n, n_0, 0) = 0$ of (2.3.2) is uniformly (asymptotically) stable provided the trivial solution $y(n, n_0, 0) = 0$ of (2.2.1) is uniformly (asymptotically) stable.

Theorem 2.3.6. Suppose that there exist a constant $c > 1$ such that for all $n \in \mathbb{N}(n_0)$

$$\sum_{k=n_0}^{n-1} |Y(n)Y^{-1}(k + 1)| \leq c,$$

where $Y(n)$ is the fundamental matrix of linear equation (2.2.1). Further, suppose that for all $(n, y) \in \mathbb{N}(n_0) \times \mathbb{R}^m$ the function $f(n, y(n))$ satisfy the inequality

$$\|f(n, y(n))\| \leq \alpha \|y\|,$$

with $\alpha < 1$. Then, the trivial solution of (2.3.2) is asymptotically stable.

Section 2.4.

Let $\mathbb{P}_k(\mathbb{R}^m)$ denotes the family of all non-empty compact convex subsets of \mathbb{R}^m. Define the addition and scalar multiplication in $\mathbb{P}_k(\mathbb{R}^m)$ as usual. Then Radstrom [72] states that $\mathbb{P}_k(\mathbb{R}^m)$ is a commutative semi-group under addition, which satisfies the cancellation law. Moreover, if $a, b \in \mathbb{R}$ and $P, Q \in \mathbb{P}_k(\mathbb{R}^m)$, then

$$a(P + Q) = aP + aQ, \quad a(bP) = (ab)P, \quad 1P = P$$
and if $a, b \geq 0$, then $(a + b)P = aP + bP$. The Hausdorff metric is the distance between P and Q and is defined by

$$d(P, Q) = \inf\{\epsilon : P \subset N(Q, \epsilon), Q \subset N(P, \epsilon)\},$$

where

$$N(P, \epsilon) = \{x \in \mathbb{R}^m : ||x - y|| < \epsilon, \text{ for some } y \in P\}.$$

Let $J = [c, d] \subset \mathbb{R}$ be a compact interval and denote

$$\mathbb{E}^m = \{v : \mathbb{R}^m \to [0, 1] \text{ satisfies (i)-(iv) below}\},$$

where

(i) v is normal, i.e. there exists a $y_0 \in \mathbb{R}^m$ such that $v(y_0) = 1$;

(ii) v is fuzzy convex, i.e. for $z_1, z_2 \in \mathbb{R}^m$ and $0 \leq \lambda \leq 1$,

$$v(\lambda z_1 + (1 - \lambda)z_2) \geq \min[v(z_1), v(z_2)];$$

(iii) v is upper semi-continuous;

(iv) $[v]^0 = \{y \in \mathbb{R}^m / v(y) > 0\}$ (\overline{P} = closure of set P) is compact.

For $0 < \alpha \leq 1$, the α-level set is denoted and defined by $[v]^\alpha = \{y \in \mathbb{R}^m / v(y) \geq \alpha\}$. Obviously, $[v]^\alpha \in \mathbb{P}_k(\mathbb{R}^m)$ for all $0 \leq \alpha \leq 1$.

31
The real numbers can be embedded to \mathbb{E}^1 by the correspondence

$$c \rightarrow \tilde{c}(t) = \begin{cases}
1 & \text{if } t = c, \\
0 & \text{elsewhere}.
\end{cases}$$

It is well known that

$$[w_1 + w_2]^\alpha = [w_1]^\alpha + [w_2]^\alpha, \quad [aw]^\alpha = a[w]^\alpha,$$

for all $w, w_1, w_2 \in \mathbb{E}^m, a \in \mathbb{R}, 0 \leq \alpha \leq 1$.

In the follow up, we require the following well known theorem.

Theorem 2.4.1. (Representation Theorem)[67] If $v \in \mathbb{E}^m$, then

1. $[v]^\alpha \in P_k(\mathbb{R}^m)$, for all $0 \leq \alpha \leq 1$,

2. $[v]^{\alpha_2} \subset [v]^{\alpha_1}$, for all $0 \leq \alpha_1 \leq \alpha_2 \leq 1$,

3. If $\{\alpha_k\}$ is a non-decreasing sequence converging to $\alpha > 0$, then

$$[v]^\alpha = \bigcap_{k \geq 1} [v]^{\alpha_k}.$$

Conversely, if $\{P^\alpha : 0 \leq \alpha \leq 1\}$ is a family of subsets of \mathbb{R}^m satisfying (1)-(3), then there exists a $v \in \mathbb{E}^m$ such that $[v]^\alpha = P^\alpha$ for $0 < \alpha \leq 1$ and

$$[v]^0 = \bigcup_{0 < \alpha \leq 1} P^\alpha \subset P^0.$$

Define $D : \mathbb{E}^m \times \mathbb{E}^m \rightarrow [0, \infty)$ by the equation

$$D(w_1, w_2) = \sup\{d([w_1]^\alpha, [w_2]^\alpha) / \alpha \in [0, 1]\},$$
where \(d \) is the Hausdorff metric. From the outcomes of \([16, 70]\), it is easily shown that the metric space \((\mathbb{E}^m, D)\) is complete, but it is not a locally compact. In addition, the distance \(D \) satisfies the following

1. \(D(x + z, y + z) = D(x, y), \quad x, y, z \in \mathbb{E}^m \),
2. \(D(\lambda x, \lambda y) = |\lambda| D(x, y), \quad x, y \in \mathbb{E}^m, \lambda \in \mathbb{R} \),
3. \(D(w + x, y + z) \leq D(w, y) + D(x, z), \quad w, x, y, z \in \mathbb{E}^m \).

From \([72]\), we notice that \((\mathbb{E}^m, D)\) is not a vector space, but it can be embedded isomorphically as a cone in a Banach space.

Definition 2.4.1. \([35]\) A mapping \(F : J \to \mathbb{E}^m \) is strongly measurable if for all \(\alpha \in [0, 1] \) the set-valued mapping \(F_\alpha : J \to \mathbb{P}_k(\mathbb{R}^m) \) defined by \(F_\alpha(t) = [F(t)]^\alpha \) is (Lebesgue) measurable, when \(\mathbb{P}_k(\mathbb{R}^m) \) endowed with the topology generated by the Hausdorff metric \(d \).

Consider the linear difference control system of the form

\[
\begin{align*}
x(n + 1) &= A(n)x(n) + B(n)u(n), \quad x(n_0) = x_0, \quad (2.4.1) \\
y(n) &= C(n)x(n) + D(n)u(n), \quad (2.4.2)
\end{align*}
\]

where \(A(n) \) is a nonsingular matrix, \(B, C, D \) are matrix functions of \(n \) on \(J = [n_0, L] \cap \mathbb{N}, \ L \in \mathbb{N} \). If the inputs \(u(n) \) are crisp, then it is the deterministic difference control system.

Definition 2.4.2. \([31]\) System \((2.4.1)\) is said to be completely controllable (or simply controllable) if for any \(n_0 \in J \), any initial state \(x(n_0) = x_0 \),
and any given final state (the desired state) x_f, there exists a finite time $N > n_0$ and a control $u(n)$, $n_0 < n \leq N$, such that $x(N) = x_f$.

Definition 2.4.3. The input output system (2.4.1) and (2.4.2) is completely observable if for any $n_0 \geq 0$, there exists $N > n_0$ such that the knowledge of $u(n)$ and $y(n)$ for $n_0 \leq n \leq N$ suffices to determine $x(n_0) = x_0$.

Theorem 2.4.2. Let $Y(n)$ be the fundamental matrix of (2.2.1). Then the unique solution of the initial value problem (2.4.1) is

$$x(n) = Y(n)Y^{-1}(n_0)x_0 + \sum_{k=n_0}^{n-1} Y(n)Y^{-1}(k + 1)B(k)u(k).$$