REFERENCES


16. CFR 490.2 [Title 10 Energy; Chapter II Department of Energy; Subchapter D Energy Conservation; Part 490 Alternative Fuel Transportation Program; Subpart A General Provisions], 216 (7) of the Clean Air Act.


25. EDEM (V2.1) User guide (V2.1) 2008, DEM Solutions, UK.


47. ISO 10767-1 1996, ISO standards Hydraulic fluid power- 
Determination of pressure ripple levels generated in systems and 


49. ISO/TS 12181-1 & 12181- 2 2003, Geometrical product 
specifications (GPS) - Roundness; Part1: Terms, definitions and 

50. Issa RI 1986, ‘Solution of Implicitly Discretized Fluid Flow 
Equations by Operator Splitting’, Journal of Computational 

51. ITT Pump Application Guide 2010, Piping Design Section 01. 
Available online at: www.gouldspumps.com/pag_0005.html [21-
10-2009].

52. Ivanović, L & Josifović, D 2006, ‘Specific sliding of trochoidal 
gearing profile in the gerotor pumps’, FME Transactions, 
vol. 34, no. 3, pp. 121-127.

53. Jamadar, M, Jose, A, Ramdasi, S & Marathe, N 2013, 
‘Development of In-house Competency to Build Compact 
Gerotor Oil Pump for High Speed Diesel Engine Application’, 

54. Jenkins, JT & Savage, SB 1983, ‘A theory for the rapid flow of 
different, smooth, nearly elastic, spherical particles’, Journal of 

55. Jiang, Y, Furmanczyk, M, Lowry, S, Zhang, D & Perng, CY 
2008, ‘A three-dimensional design tool for crescent oil pump’, 
SAE Technical paper number 2008-01-0003, DOI:10.4271/2008-
01-0003.

56. Jiang, Y, Przekis, J & Perng, CY, 1996 ‘Computational analysis 
of oil pumps with an implicit pressure based method using 
960423, DOI: 10.4271/960423.


