TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 TEXTILE WASTEWATER TREATMENT PROCESS

1.1.1 Stages of Treatment Process

1.1.1.1 Primary Treatment Process
1.1.1.2 Secondary Treatment Process
1.1.1.3 Tertiary Treatment Process

1.1.2 Major Parameters

1.1.3 pH Control

1.2 CONTROLLER FOR pH

1.3 HEURISTIC ALGORITHM

1.4 MOTIVATION OF RESEARCH WORK

1.5 OBJECTIVES OF THE RESEARCH

1.6 ORGANIZATION OF THESIS

2 LITERATURE REVIEW

2.1 WASTEWATER TREATMENT

2.2 pH NEUTRALIZATION PROCESS

2.3 PID CONTROLLER TUNING
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>HEURISTIC ALGORITHM</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Genetic Algorithm</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Particle Swarm Optimization Algorithm</td>
<td>30</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Bacterial Foraging Optimization Algorithm</td>
<td>32</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Firefly Optimization Algorithm</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>OBJECTIVE FUNCTION</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>SUMMARY</td>
<td>37</td>
</tr>
</tbody>
</table>

3 REAL TIME SYSTEM DESCRIPTION AND
MATHEMATICAL MODELLING OF
NONLINEAR pH CONTROL SYSTEM 39

3.1 FUNCTIONING OF REAL TIME pH
CONTROL SYSTEM 39
3.1.1	Processing Section	42
3.1.2	USB Based Data Acquisition Section	44
3.1.3	Controller Section	46

3.2 INSTRUMENTATION OF pH CONTROL
SYSTEM 46
3.2.1	pH Meter	47
3.2.1.1	pH Electrode	47
3.2.1.2	pH Transmitter	48
3.2.2	Control Valve with Positioner	49
3.2.3	Electro Pneumatic Convertor	50

3.3 CHARACTERISTICS OF pH PROCESS 51

3.4 SELECTION OF OPERATING POINTS 52
<p>| 3.4.1 | Operating Point of pH-11 | 52 |
| 3.4.2 | Operating Point of pH-7 | 53 |
| 3.4.3 | Operating Point of pH-2 | 53 |</p>
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>MATHEMATICAL MODELING OF pH PROCESS</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>SUMMARY</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>HEURISTIC ALGORITHM</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>GENETIC ALGORITHM</td>
<td>58</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Merits of GA</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>PSO ALGORITHM</td>
<td>61</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Merits of PSO Algorithm</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>BFO ALGORITHM</td>
<td>65</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Merits of BFO Algorithm</td>
<td>68</td>
</tr>
<tr>
<td>4.4</td>
<td>FIREFLY ALGORITHM</td>
<td>68</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Fundamentals of the FA</td>
<td>70</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Merits of BFO Algorithm</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>OBJECTIVE FUNCTION</td>
<td>73</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Single Objective Function</td>
<td>73</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Multi-Objective Function</td>
<td>73</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Pareto Optimality</td>
<td>74</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Weighted Sum Optimality</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>SUMMARY</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>BFO BASED PI CONTROLLER DESIGN</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>Z-N CONTROLLER DESIGN</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>CONTROLLER PARAMETER SETTINGS</td>
<td>78</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Initial Algorithm Parameters</td>
<td>78</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Objective Function Parameters</td>
<td>79</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Search Boundary for Controller Parameters</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>PI CONTROLLER DESIGN</td>
<td>80</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>5.3.1 PI Controller Model</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>5.4 PERFORMANCE INDICES</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>5.5 SIMULATION STUDY</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>5.5.1 Servo Response Analysis</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>5.5.2 Regulatory Response Analysis</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>5.6 EXPERIMENTAL ANALYSIS OF BFO-PI CONTROLLER</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>5.6.1 Servo Response Analysis</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>5.6.2 Regulatory Response Analysis</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5.7 SUMMARY</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>6 FIREFLY BASED PI CONTROLLER DESIGN</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>6.1 RELAY FEEDBACK CONTROLLER DESIGN</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>6.2 CONTROLLER PARAMETER SETTINGS</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>6.3 PI CONTROLLER MODEL</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>6.4 SIMULATION STUDY</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>6.4.1 Servo Response Analysis</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Regulatory Response Analysis</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>6.5 EXPERIMENTAL ANALYSIS OF FA-PI CONTROLLER</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>6.5.1 Servo Response Analysis</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>6.5.2 Regulatory Response Analysis</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>6.6 SUMMARY</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>7 REAL TIME TEXTILE EFFLUENT ANALYSIS USING HEURISTIC CONTROLLERS</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>7.1 COLLECTION OF SAMPLES</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>7.2 PERFORMANCE ANALYSIS OF HEURISTIC-BASED CONTROLLERS WITH EFFLUENT</td>
<td>106</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>7.2.1</td>
<td>pH Control at Coagulation Process</td>
<td>106</td>
</tr>
<tr>
<td>7.2.2</td>
<td>pH Control at Biological Process</td>
<td>112</td>
</tr>
<tr>
<td>7.3</td>
<td>SUMMARY</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>CONCLUSION AND FUTURE SCOPE</td>
<td>118</td>
</tr>
<tr>
<td>8.1</td>
<td>CONCLUSION</td>
<td>118</td>
</tr>
<tr>
<td>8.2</td>
<td>FUTURE SCOPE</td>
<td>121</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LIST OF PUBLICATIONS</th>
</tr>
</thead>
</table>

122

126

140