CHAPTER - 1
MINIMAL QUOTIENT MAPPINGS

1.1 INTRODUCTION

Njastad [55] introduced the concept of an \(\alpha \)-sets and Mashhour et al [46] introduced \(\alpha \)-continuous mappings in topological spaces. The topological notions of semi-open sets and semi-continuity, and preopen sets and precontinuity were introduced by Levine [37] and Mashhour et al [47] respectively. After advent of these notions, Reilly [73] and Thivagar [36] obtained many interesting and important results on \(\alpha \)-continuity and \(\alpha \)-irresolute mappings in topological spaces. Lellis Thivagar [36] introduced the concepts of \(\alpha \)-quotient mappings and \(\alpha^* \)-quotient mappings in topological spaces. Maki [45] introduced the notion of minimal structures to this research world. The concepts of minimal structures (briefly m-structures) were developed by Popa and Noiri [66] in 2000.

In this chapter, we introduce a new class of minimal mappings called M-\(\alpha \)-continuous mappings and M-\(\alpha^* \)-quotient mappings in minimal spaces. At every places the new notions have been substantiated with suitable examples.

1.2 PRELIMINARIES

Definition 1.2.1 [66]
Let \(X \) be a nonempty set and \(\wp(X) \) the power set of \(X \). A subfamily \(m_x \) of \(\wp(X) \) is called a minimal structure (briefly, m-structure) on \(X \) if \(\emptyset \in m_x \) and \(X \in m_x \).
A set X with an m-structure m_x is called an m-space and is denoted by (X, m_x). Each member of m_x is said to be m_x-open and the complement of an m_x-open set is said to be m_x-closed.

Throughout this thesis, (X, m_x), (Y, m_y) and (Z, m_z) (or X, Y and Z) mean minimal spaces.

Definition 1.2.2 [66]

Let X be a nonempty set and m_x an m-structure on X. For a subset A of X, the m_x-closure of A and the m_x-interior of A are defined as follows:

(i) m_x-Cl(A) = $\bigcap\{ F : A \subseteq F, X - F \in m_x \}$,

(ii) m_x-Int(A) = $\bigcup\{ U : U \subseteq A, U \in m_x \}$.

Lemma 1.2.3 [66]

Let X be a nonempty set and m_x a minimal structure on X. For subsets A and B of X, the following properties hold:

(i) m_x-Cl($X - A$) = $X - m_x$-Int(A) and m_x-Int($X - A$) = $X - m_x$-Cl(A),

(ii) If $(X - A) \in m_x$, then m_x-Cl(A) = A and if $A \in m_x$, then m_x-Int(A) = A,

(iii) m_x-Cl(\emptyset) = \emptyset, m_x-Cl(X) = X, m_x-Int(\emptyset) = \emptyset and m_x-Int(X) = X,

(iv) If $A \subseteq B$, then m_x-Cl(A) \subseteq m_x-Cl(B) and m_x-Int(A) \subseteq m_x-Int(B),

(v) $A \subseteq m_x$-Cl(A) and m_x-Int(A) \subseteq A.
(vi) \(m_\kappa\text{-Cl}(m_\kappa\text{-Cl}(A)) = m_\kappa\text{-Cl}(A) \) and \(m_\kappa\text{-Int}(m_\kappa\text{-Int}(A)) = m_\kappa\text{-Int}(A) \).

Definition 1.2.4 [66]

A minimal structure \(m_\kappa \) on a nonempty set \(X \) is said to have property \(\mathfrak{B} \) if the union of any family of subsets belonging to \(m_\kappa \) belongs to \(m_\kappa \).

Lemma 1.2.5 [66]

The following are equivalent for the minimal space \((X, m_\kappa)\).

(i) \(m_\kappa \) have property \(\mathfrak{B} \).

(ii) If \(m_\kappa\text{-Int}(E) = E \), then \(E \in m_\kappa \).

(iii) If \(m_\kappa\text{-Cl}(F) = F \), then \(F^c \in m_\kappa \).

Definition 1.2.6

Let \(S \) be a subset of \(X \). Then \(S \) is said to be

(i) \(m_\kappa\text{-}\alpha\text{-open} \) [51] if \(S \subseteq m_\kappa\text{-Int}(m_\kappa\text{-Cl}(m_\kappa\text{-Int}(S))) \).

(ii) \(m_\kappa\text{-semi-open} \) [50] if \(S \subseteq m_\kappa\text{-Cl}(m_\kappa\text{-Int}(S)) \).

(iii) \(m_\kappa\text{-preopen} \) [49] if \(S \subseteq m_\kappa\text{-Int}(m_\kappa\text{-Cl}(S)) \).

The family of all \(m_\kappa\text{-}\alpha\text{-open} \) [resp. \(m_\kappa\text{-semi-open}, m_\kappa\text{-preopen} \)] sets of \(X \) is denoted by \(m_\kappa\text{-}\alpha\text{O}(X) \) [resp. \(m_\kappa\text{-SO}(X), m_\kappa\text{-PO}(X) \)].

Remark 1.2.7

(i) Every \(m_\kappa\text{-open} \) set is \(m_\kappa\text{-}\alpha\text{-open} \) but not conversely.

(ii) A \(m_\kappa\text{-semi-open} \) [\(m_\kappa\text{-preopen} \)] set need not be \(m_\kappa\text{-}\alpha\text{-open} \).

Example 1.2.8
Let \(Y = \{p, q, r\} \) and \(m_y = \{\phi, Y, \{p\}, \{q\}, \{p, q\}\} \). We have
\[m_y^{-\alpha}O(Y) = \{\phi, Y, \{p\}, \{q\}, \{p, q\}\}; \]
\[m_y^{-SO}(Y) = \{\phi, Y, \{p\}, \{q\}, \{p, q\}, \{p, r\}, \{q, r\}\} \]
and \(m_y^{-PO}(Y) = \{\phi, Y, \{p\}, \{q\}, \{p, q\}\} \).

1.3 **M-\(\alpha \)-CONTINUOUS MAPPINGS**

Definition 1.3.1

Let \(f : X \rightarrow Y \) be a mapping. Then \(f \) is said to be

(i) \(M^{*} \)-continuous [49] if the inverse image of each \(m_y \)-open set in \(Y \) is \(m_x \)-open set in \(X \).

(ii) \(M-\alpha \)-continuous [resp. \(M \)-semi-continuous, \(M \)-pre-continuous] if the inverse image of each \(m_y \)-open set in \(Y \) is an \(m_x-\alpha \)-open set [resp. \(m_x \)-semi-open set, \(m_x \)-preopen set] in \(X \).

(iii) \(M-\alpha \)-open [resp. \(M \)-semi-open, \(M \)-preopen, \(M \)-open] if the image of each \(m_x \)-open set in \(X \) is an \(m_y-\alpha \)-open [resp. \(m_y \)-semi-open, \(m_y \)-preopen, \(m_y \)-open] set in \(Y \).

Theorem 1.3.2

\(A \) is \(m_x \)-semi-open set in \(X \) if and only if \(m_x-\text{Cl}(A) = m_x-\text{Cl}(m_x-\text{Int}(A)) \).

Proof
Suppose A is m_x-semi-open set. Then $A \subseteq m_x\text{-Cl}(m_x\text{-Int}(A))$ and $m_x\text{-Cl}(A) \subseteq m_x\text{-Cl}(m_x\text{-Int}(A))$. On the other hand, we have $m_x\text{-Int}(A) \subseteq A$ and hence $m_x\text{-Cl}(m_x\text{-Int}(A)) \subseteq m_x\text{-Cl}(A)$.

Conversely, we have $A \subseteq m_x\text{-Cl}(A)$ and $m_x\text{-Cl}(A) = m_x\text{-Cl}(m_x\text{-Int}(A))$. Therefore $A \subseteq m_x\text{-Cl}(m_x\text{-Int}(A))$. Hence A is m_x-semi-open set.

Theorem 1.3.3

Let A be a subset of X. Then A is m_x-α-open set in X if and only if A is m_x-semi-open set and m_x-preopen set in X.

Proof

Let $A \in m_x\text{-}\alpha O(X)$. By the definition of m_x-α-open set, we have $A \subseteq m_x\text{-Int}(m_x\text{-Cl}(A))$ and $A \subseteq m_x\text{-Cl}(m_x\text{-Int}(A))$. Therefore $A \in m_x\text{-PO}(X)$ and $A \in m_x\text{-SO}(X)$. Hence $A \in m_x\text{-SO}(X) \cap m_x\text{-PO}(X)$.

Conversely, let $A \in m_x\text{-SO}(X)$. Then by Theorem 3.2, $m_x\text{-Cl}(A) = m_x\text{-Cl}(m_x\text{-Int}(A))$. Moreover let $A \in m_x\text{-PO}(X)$. Then $A \subseteq m_x\text{-Int}(m_x\text{-Cl}(A))$. Hence $A \subseteq m_x\text{-Int}(m_x\text{-Cl}(m_x\text{-Int}(A)))$. It shows that $A \in m_x\text{-}\alpha O(X)$.

Theorem 1.3.4

The mapping $f : X \to Y$ is M-α-continuous if and only if it is M-semi-continuous and M-precontinuous.

Proof
Let A be an \(m_y \)-open set in Y. Since f is \(M-\alpha \)-continuous,
\(f^{-1}(A) \in m_x-\alpha O(X) = m_x-SO(X) \cap m_x-PO(X) \). Since \(f^{-1}(A) \in m_x-SO(X) \) and \(f^{-1}(A) \in m_x-PO(X) \), f is \(M \)-semi-continuous and \(M \)-precontinuous.

Conversely, let f be \(M \)-semi-continuous and \(M \)-precontinuous mapping. Let \(V \) be an \(m_y \)-open set in Y. Then \(f^{-1}(V) \in m_x-SO(X) \) and \(f^{-1}(V) \in m_x-PO(X) \). Therefore \(f^{-1}(V) \in m_x-SO(X) \cap m_x-PO(X) = m_x-\alpha O(X) \). Hence f is \(M-\alpha \)-continuous.

1.4 M-\(\alpha \)-IRRESOLUTE MAPPINGS

Definition 1.4.1

Let \(S \) be a subset of X. Then \(S \) is said to be

(i) \(m_x \)-preclosed if \(m_x-Cl(m_x-Int(S)) \subseteq S \).

(ii) \(m_x \)-\(\alpha \)-closed if \(m_x-Cl(m_x-Int(m_x-Cl(S))) \subseteq S \).

(iii) \(m_x \)-semi-closed if \(m_x-Int(m_x-Cl(S)) \subseteq S \).

The family of all \(m_x \)-\(\alpha \)-closed [resp. \(m_x \)-semi-closed, \(m_x \)-preclosed] sets of X is denoted by \(m_x-\alpha C(X) \) [resp. \(m_x-SC(X) \), \(m_x-PC(X) \)].

The complement of \(m_x \)-\(\alpha \)-open [resp. \(m_x \)-semi-open, \(m_x \)-preopen] set is \(m_x \)-\(\alpha \)-closed [resp. \(m_x \)-semi-closed, \(m_x \)-preclosed].

Definition 1.4.2

Let \(f : X \to Y \) be a mapping. Then f is said to be \(M-\alpha \)-irresolute (resp. \(M \)-semi-irresolute, \(M \)-preirresolute) if the inverse image of every
m_γ-α-open [resp. m_γ-semi-open, m_γ-preopen] set in Y is an m_α-α-open [resp. m_α-semi-open, m_α-preopen] set in X.

Theorem 1.4.3

A mapping f : X → Y is M-semi-irresolute if and only if for every m_γ-semi-closed subset A of Y, f^(1)(A) is m_α-semi-closed in X.

Proof

If f is M-semi-irresolute, then for every m_γ-semi-open subset B of Y, f^(1)(B) is m_α-semi-open in X. If A is any m_γ-semi-closed subset of Y, then Y – A is m_γ-semi-open. Thus f^(1)(Y – A) is m_α-semi-open but f^(1)(Y – A) = X – f^(1)(A) so that f^(1)(A) is m_α-semi-closed in X.

Conversely, if, for all m_γ-semi-closed subsets A of Y, f^(1)(A) is m_α-semi-closed in X and if B is any m_γ-semi-open subset of Y, then Y – B is m_γ-semi-closed. Also f^(1)(Y – B) = X – f^(1)(B) is m_α-semi-closed. Thus f^(1)(B) is m_α-semi-open in X. Hence f is M-semi-irresolute.

Theorem 1.4.4

Let f and g be two mappings. If f : X → Y and g : Y → Z are both M-semi-irresolute then gof : X → Z is M-semi-irresolute.

Proof

If A ⊆ Z is m_α-semi-open, then g^(−1)(A) is m_γ-semi-open set in Y because g is M-semi-irresolute. Consequently since f is M-semi-irresolute, f^(1)(g^(−1)(A)) = (gof)^(−1)(A) is m_α-semi-open set in X. Hence gof is M-semi-irresolute mapping.

Corollary 1.4.5
If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are both M-α-irresolute mappings then $gof : X \rightarrow Z$ is M-α-irresolute.

Corollary 1.4.6

If the mapping $f : X \rightarrow Y$ is M-α-irresolute and the mapping $g : Y \rightarrow Z$ is M-α-continuous then $gof : X \rightarrow Z$ is M-α-continuous mapping.

Corollary 1.4.7

Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be two mappings. Then

(i) if f is M-semi-irresolute and g is M-semi-continuous, then gof is M-semi-continuous mapping.

(ii) if f is M-preirresolute and g is M-precontinuous, then gof is M-precontinuous mapping.

Theorem 1.4.8

If the mapping $f : X \rightarrow Y$ is both M-semi-irresolute and M-preirresolute then f is M-α-irresolute mapping.

Proof

It is obvious.

1.5 M-α-QUOTIENT MAPPINGS

Definition 1.5.1

Let $f : X \rightarrow Y$ be a surjective mapping. Then f is said to be M-quotient provided a subset S of Y is m_y-open in Y if and only if $f^{-1}(S)$ is m_x-open in X.
Definition 1.5.2

Let \(f : X \rightarrow Y \) be a surjective mapping. Then \(f \) is said to be

(i) an \(M\)-\(\alpha \)-quotient if \(f \) is \(M\)-\(\alpha \)-continuous and \(f^{-1}(V) \) is \(m_\kappa \)-open in \(X \) implies \(V \) is an \(m_\gamma \)-\(\alpha \)-open set in \(Y \).

(ii) a \(M\)-semi-quotient if \(f \) is \(M\)-semi-continuous and \(f^{-1}(V) \) is \(m_\kappa \)-open in \(X \) implies \(V \) is a \(m_\gamma \)-semi-open set in \(Y \).

(iii) a \(M\)-prequotient if \(f \) is \(M\)-precontinuous and \(f^{-1}(V) \) is \(m_\kappa \)-open in \(X \) implies \(V \) is a \(m_\gamma \)-preopen set in \(Y \).

Example 1.5.3

Let \(X = \{a, b, c\} \) and \(m_\kappa = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \). We have \(m_\kappa\)-\(\alpha \)O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}; \(m_\kappa\)-SO(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \) and \(m_\kappa\)-PO(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.

Let \(Y = \{p, q, r\} \) and \(m_\gamma = \{\emptyset, Y, \{p\}, \{q\}, \{p, q\}\} \). We have \(m_\gamma\)-\(\alpha \)O(Y) = \{\emptyset, Y, \{p\}, \{q\}, \{p, q\}\}; \(m_\gamma\)-SO(Y) = \{\emptyset, Y, \{p\}, \{q\}, \{p, q\}, \{p, r\}, \{q, r\}\} \) and \(m_\gamma\)-PO(Y) = \{\emptyset, Y, \{p\}, \{q\}, \{p, q\}\}.

Define \(f : X \rightarrow Y \) by \(f(a) = p; f(b) = q; f(c) = r \). Since the inverse image of each \(m_\gamma \)-open in \(Y \) is \(m_\kappa \)-\(\alpha \)-open in \(X \), clearly \(f \) is \(M\)-\(\alpha \)-continuous and an \(M\)-\(\alpha \)-quotient mapping.

Theorem 1.5.4

If the mapping \(f : X \rightarrow Y \) is surjective, \(M\)-\(\alpha \)-continuous and \(M\)-\(\alpha \)-open then \(f \) is an \(M\)-\(\alpha \)-quotient mapping.
Proof

Suppose \(f^{-1}(V) \) is any \(m_x \)-open set in \(X \). Then \(f(f^{-1}(V)) \) is an \(m_y \)-\(\alpha \)-open set in \(Y \) as \(f \) is \(M \)-\(\alpha \)-open. Since \(f \) is surjective, \(f(f^{-1}(V)) = V \). Thus \(V \) is an \(m_y \)-\(\alpha \)-open set in \(Y \). Hence \(f \) is \(M \)-\(\alpha \)-quotient mapping.

Theorem 1.5.5

If the mapping \(f : X \to Y \) is \(M \)-open surjective and \(M \)-\(\alpha \)-irresolute, and the mapping \(g : Y \to Z \) is an \(M \)-\(\alpha \)-quotient then \(g \circ f : X \to Z \) is an \(M \)-\(\alpha \)-quotient mapping.

Proof

Let \(V \) be any \(m_z \)-open set in \(Z \). Since \(g \) is \(M \)-\(\alpha \)-continuous, \(g^{-1}(V) \in m_y \)-\(\alpha \)O(Y). Since \(f \) is \(M \)-\(\alpha \)-irresolute, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in m_x \)-\(\alpha \)O(X). Thus \(g \circ f \) is \(M \)-\(\alpha \)-continuous. Also suppose \(f^{-1}(g^{-1}(V)) \) is \(m_x \)-open set in \(X \). Since \(f \) is \(M \)-open, \(f(f^{-1}(g^{-1}(V))) \) is \(m_y \)-open set in \(Y \). Since \(f \) is surjective, \(f(f^{-1}(g^{-1}(V))) = g^{-1}(V) \) and since \(g \) is \(M \)-\(\alpha \)-quotient, \(V \in m_z \)-\(\alpha \)O(Z). Hence \(g \circ f \) is an \(M \)-\(\alpha \)-quotient.

Corollary 1.5.6

If the mapping \(f : X \to Y \) is \(M \)-open surjective and \(M \)-semi-[M-pre] irresolute and the mapping \(g : Y \to Z \) is \(M \)-semi-[M\((1,2)^*\)-pre] quotient then \(g \circ f : X \to Z \) is \(M \)-semi-[M-pre] quotient mapping.

Theorem 1.5.7

A mapping \(f : X \to Y \) is an \(M \)-\(\alpha \)-quotient if and only if it is \(M \)-semi-quotient mapping and \(M \)-prequotient mapping.
Proof

Let V be any m_y-open set in Y. Since f is M-α-quotient, $f^{-1}(V) \in m_x\alpha O(X) = m_x SO(X) \cap m_x PO(X)$. Thus f is both M-semi-continuous and M-precontinuous. Also suppose $f^{-1}(V)$ is an m_x-open set in X. Since f is M-α-quotient, $V \in m_y\alpha O(Y) = m_y SO(Y) \cap m_y PO(Y)$. Thus V is both m_y-semi-open set and m_y-preopen set in Y. Hence f is M-semi-quotient and M-prequotient.

Conversely, since f is M-semi-quotient and M-prequotient, f is M-semi-continuous and M-precontinuous. Hence f is M-α-continuous. Also suppose $f^{-1}(V)$ is an m_x-open set in X. By Definition 1.5.2, $V \in m_y SO(Y) \cap m_y PO(Y) = m_y\alpha O(Y)$. Thus f is M-α-quotient mapping.

Definition 1.5.8

(i) Let $f : X \to Y$ be a surjective and M-α-continuous mapping. Then f is said to be strongly M-α-quotient provided a subset S of Y is m_y-open set in Y if and only if $f^{-1}(S)$ is an m_x-α-open set in X.

(ii) Let $f : X \to Y$ be a surjective and M-semi-continuous mapping. Then f is said to be strongly M-semi-quotient provided a subset S of Y is m_y-open set in Y if and only if $f^{-1}(S)$ is m_x-semi-open set in X.

(iii) Let $f : X \to Y$ be a surjective and M-precontinuous mapping. Then f is said to be strongly M-prequotient
provided a subset S of Y is m_y-open set in Y if and only if $f^{-1}(S)$ is m_x-preopen set in X.

Theorem 1.5.9

If the mapping $f : X \rightarrow Y$ is strongly M-semi-quotient and strongly M-prequotient then f is strongly M-α-quotient mapping.

Proof

Since f is M-semi-continuous and M-precontinuous, by Theorem 1.3.4, f is M-α-continuous. Also let V be an m_y-open set in Y. By Definition 1.3.1 and Theorem 1.3.3, $f^{-1}(V) \in m_x$-SO$(X) \cap m_x$-PO$(X) = m_x$-αO(X).

Conversely, let $f^{-1}(V) \in m_x$-αO(X). Then m_x-αO$(X) = m_x$-SO$(X) \cap m_x$-PO(X). Since f is strongly M-semi-quotient and strongly M-prequotient, V is m_y-open set in Y. Hence f is strongly M-α-quotient mapping.

1.6. M-α^*-QUOTIENT MAPPINGS

Definition 1.6.1

Let $f : X \rightarrow Y$ be a surjective mapping. Then f is said to be

(i) M-α^*-quotient if f is M-α-irresolute and $f^{-1}(S)$ is m_x-α-open set in X implies S is m_y-open set in Y.

(ii) M-semi-*quotient if f is M-semi-irresolute and $f^{-1}(S)$ is m_x-semi-open set in X implies S is m_y-open set in Y.
(iii) M-pre*quotient if f is M-preirresolute and \(f^{-1}(S) \) is m\(_x\)-preopen set in X implies S is m\(_y\)-open set in Y.

Definition 1.6.2

Let \(f : X \rightarrow Y \) be a mapping. Then \(f \) is said to be strongly M-\(\alpha \)-open if the image of every m\(_x\)-\(\alpha \)-open set in X is an m\(_y\)-\(\alpha \)-open set in Y.

Example 1.6.3

Consider the Example 1.5.3. Clearly \(f \) is M-\(\alpha \)-irresolute and M-\(\alpha \)*-quotient mapping.

Example 1.6.4

Consider the Example 1.5.3. Clearly \(f \) is strongly M-\(\alpha \)-open mapping.

Theorem 1.6.5

Let the mapping \(f : X \rightarrow Y \) be surjective strongly M-\(\alpha \)-open and M-\(\alpha \)-irresolute, and the mapping \(g : Y \rightarrow Z \) be an M-\(\alpha \)*-quotient. Then \(gof : X \rightarrow Z \) is an M-\(\alpha \)*-quotient mapping.

Proof

Let V be any m\(_x\)-\(\alpha \)-open set in Z. Then \(g^{-1}(V) \) is an m\(_y\)-\(\alpha \)-open set in Y as \(g \) is an M-\(\alpha \)*-quotient mapping. Then \(f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \) is an m\(_x\)-\(\alpha \)-open set in X as \(f \) is M-\(\alpha \)-irresolute. This shows that \(gof \) is M-\(\alpha \)-irresolute. Also suppose \((gof)^{-1}(V) = f^{-1}(g^{-1}(V)) \) is an m\(_x\)-\(\alpha \)-open set in X. Since \(f \) is strongly M-\(\alpha \)-open,
f(f^{-1}(g^{-1}(V))) is an \(m_y-\alpha\)-open set in \(Y\). Since \(f\) is surjective, \(f(f^{-1}(g^{-1}(V))) = g^{-1}(V)\) is an \(m_y-\alpha\)-open set in \(Y\). Since \(g\) is an \(M-\alpha^*\)-quotient mapping, \(V\) is \(m_z\)-open in \(Z\). Hence the theorem.

Theorem 1.6.6

If the mapping \(f : X \to Y\) is \(M\)-semi-*quotient and \(M\)-prequotient then \(f\) is \(M-\alpha^*\)-quotient mapping.

Proof

Since \(f\) is \(M\)-semi-*quotient and \(M\)-pre*quotient, \(f\) is \(M\)-semi-irresolute and \(M\)-preirresolute. By Theorem 1.4.8., \(f\) is \(M-\alpha\)-irresolute. Also suppose \(f^{-1}(V) \in m_x-\alpha O(X)\). Then \(m_x-\alpha O(X) = m_x-SO(X) \cap m_x-PO(X)\). Therefore \(f^{-1}(V)\) is \(m_x\)-semi-open in \(X\) and \(f^{-1}(V)\) is \(m_x\)-preopen in \(X\). Since \(f\) is \(M\)-semi-*quotient and \(M\)-pre*quotient, by Definition 1.6.1, \(V\) is \(m_y\)-open set in \(Y\). Thus \(f\) is \(M-\alpha^*\)-quotient mapping.

Theorem 1.6.7

Let \(f : X \to Y\) be a strongly \(M-\alpha\)-quotient and \(M-\alpha\)-irresolute mapping and \(g : Y \to Z\) be an \(M-\alpha^*\)-quotient mapping then \(gof : X \to Z\) is an \(M-\alpha^*\)-quotient mapping.

Proof

Let \(V \in m_z-\alpha O(Z)\). Since \(g\) is \(M-\alpha\)-irresolute, \(g^{-1}(V) \in m_y-\alpha O(Y)\). Since \(f\) is \(M-\alpha\)-irresolute, \(f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in m_x-\alpha O(X)\). Thus \(gof\) is \(M-\alpha\)-irresolute. Also suppose \((gof)^{-1}(V) = f^{-1}(g^{-1}(V)) \in m_x-\alpha O(X)\). Since \(f\) is
strongly M-\(\alpha\)-quotient, \(g^{-1}(V)\) is \(m_\gamma\)-open set in \(Y\). Then \(g^{-1}(V) \in m_\gamma-\alpha O(Y)\). Since \(g\) is M-\(\alpha^*\)-quotient, \(V\) is \(m_\gamma\)-open set in \(Z\). Hence \(g \circ f\) is M-\(\alpha^*\)-quotient mapping.

1.7 COMPARISON

Theorem 1.7.1

Let \(f : X \to Y\) be surjective mapping. Then \(f\) is M-\(\alpha^*\)-quotient if and only if it is strongly M-\(\alpha\)-quotient mapping.

Proof

Let \(V\) be an \(m_\gamma\)-open set in \(Y\). Then \(V \in m_\gamma-\alpha O(Y)\). Since \(f\) is M-\(\alpha^*\)-quotient, \(f^{-1}(V) \in m_\alpha-\alpha O(X)\). Conversely, let \(f^{-1}(V) \in m_\alpha-\alpha O(X)\). Since \(f\) is M-\(\alpha^*\)-quotient, \(V\) is \(m_\gamma\)-open set in \(Y\). Hence \(f\) is strongly M-\(\alpha\)-quotient mapping.

Conversely, let \(V\) be \(m_\gamma\)-open set in \(Y\). Then \(V \in m_\gamma-\alpha O(Y)\). Since \(f\) is strongly M-\(\alpha\)-quotient, \(f^{-1}(V) \in m_\alpha-\alpha O(X)\). Thus \(f\) is M-\(\alpha\)-irresolute. Also since \(f\) is strongly M-\(\alpha\)-quotient, \(f^{-1}(V) \in m_\alpha-\alpha O(X)\) implies \(V\) is \(m_\gamma\)-open set in \(Y\). Hence \(f\) is M-\(\alpha^*\)-quotient mapping.

Theorem 1.7.2

If the mapping \(f : X \to Y\) is M-quotient then it is M-\(\alpha\)-quotient mapping.

Proof

Let \(V\) be an \(m_\gamma\)-open set in \(Y\). Since \(f\) is M-quotient, \(f^{-1}(V)\) is \(m_\alpha\)-open set in \(X\) and \(f^{-1}(V) \in m_\alpha-\alpha O(X)\). Hence \(f\) is M-\(\alpha\)-continuous.
Suppose $f^{-1}(V)$ is an m_x-open set in X. Since f is M-quotient, V is m_y-open set in Y. Then $V \in m_y$-$\alpha O(Y)$. Hence f is M-α-quotient mapping.

Theorem 1.7.3

If the mapping $f : X \to Y$ is M-α-irresolute then it is M-α-continuous mapping.

Proof

Let A be m_y-open set in Y. Then $A \in m_y$-$\alpha O(Y)$. Since f is M-α-irresolute, $f^{-1}(A) \in m_x$-$\alpha O(X)$. It shows that f is M-α-continuous mapping.

Theorem 1.7.4

If the mapping $f : X \to Y$ is M-α^*-quotient then it is M-α-quotient mapping.

Proof

Let f be M-α^*-quotient. Then f is M-α-irresolute. We have f is M-α-continuous. Also suppose $f^{-1}(V)$ is an m_x-open in X. Then $f^{-1}(V) \in m_x$-$\alpha O(X)$. By assumption, V is m_y-open set in Y. Therefore $V \in m_y$-$\alpha O(Y)$. Hence f is M-α-quotient mapping.

Theorem 1.7.5

Every M-α^*-quotient mapping is M-α-irresolute.

Proof

We obtain it from Definition 1.6.1.
Theorem 1.7.6

Every M-α-quotient mapping is M-α-continuous.

Proof

We obtain it from Definition 1.5.2.

Remark 1.7.7

The converses of Theorems 1.5.9 and 1.6.6 are not true as per the following example.

Example 1.7.8

Let $X=\{a, b, c\}$, $m_x=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, $Y=\{p, q, r\}$ and $m_y=\{\emptyset, Y, \{p\}, \{q\}, \{p, q\}\}$. Define $f : X \to Y$ by $f(a) = p; f(b) = q$ and $f(c) = r$. Clearly f is M-α-continuous and strongly M-α-quotient mapping. Since $f^{-1}(\{p, r\}) = \{a, c\} \in m_x$-$SO(X)$ and $\{p, r\}$ is not m_y-open set in Y, f is not strongly M-semi-quotient mapping. Moreover f is M-α-irresolute, M-α^*-quotient and M-semi-irresolute mapping. Since $f^{-1}(\{q, r\}) = \{b, c\} \in m_x$-$SO(X)$ and $\{q, r\}$ is not m_y-open set in Y, f is not M-semi-α^*-quotient mapping.

Remark 1.7.9

The converses of Theorems 1.7.4 and 1.7.5 are not true as per the following example.

Example 1.7.10

Let $X = \{a, b, c\}$, $m_x = \{\emptyset, X, \{b\}, \{b, c\}\}$, $Y = \{p, q, r\}$ and $m_y = \{\emptyset, Y, \{q\}, \{q, r\}\}$. Define $f : X \to Y$ by $f(a) = p; f(b) = q$ and $f(c) = r.$
Clearly f is M-\(\alpha\)- irresolute and M-\(\alpha\)-quotient mapping. Since \(f^{-1}([p, q]) = \{a, b\} \in m_x-\alpha O(X)\) and \([p, q]\) is not \(m_y\)-open set in \(Y\), f is neither strongly M-\(\alpha\)-quotient nor M-\(\alpha^*\)-quotient mapping.

Remark 1.7.11

The converse of Theorem 1.7.2 is not true and A strongly M-\(\alpha\)-quotient mapping need not be M-quotient as per the following example.

Example 1.7.12

Let \(X = \{a, b, c\}\), \(m_x = \{\emptyset, X, \{a\}\}\), \(Y = \{p, q, r\}\) and \(m_y = \{\emptyset, Y, \{p\}, \{p, q\}, \{p, r\}\}\). Define \(f : X \to Y\) by \(f(a) = p\), \(f(b) = q\) and \(f(c) = r\). Clearly f is M-\(\alpha\)-quotient and strongly M-\(\alpha\)-quotient mapping. Since \(f^{-1}([p, q]) = \{a, b\}\) is not \(m_x\)-open where \([p, q]\) is \(m_y\)-open, f is not M-quotient mapping.

Remark 1.7.13

A M-quotient mapping need not be strongly M-\(\alpha\)-quotient as per the following example.

Example 1.7.14

Let \(X = \{a, b, c\}\), \(m_x = \{\emptyset, X, \{a\}, \{a, b\}\}\), \(Y = \{p, q, r\}\) and \(m_y = \{\emptyset, Y, \{p\}, \{p, q\}\}\). Define \(f : X \to Y\) by \(f(a) = p\); \(f(b) = q\) and \(f(c) = r\). Clearly f is M-quotient but not strongly M-\(\alpha\)-quotient mapping.

Remark 1.7.15

The converses of Theorems 1.7.3 and 1.7.6 are not true as per the following example.
Example 1.7.16

Let $X = \{a, b, c\}$, $m_x = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, $Y = \{p, q, r\}$ and $m_y = \{\emptyset, Y, \{p\}\}$. Define $f : X \to Y$ by $f(a) = p$, $f(b) = q$ and $f(c) = r$. Clearly f is M-α-continuous. Since $f^{-1}(\{p, r\}) = \{a, c\} \not\in m_x$-$\alphaO(X)$ where $\emptyset \not\in m_y$-αO(Y), f is not M-α-irresolute. Also, since $f^{-1}(\{q\}) = \{b\}$ is m_x-open in X where $\emptyset \not\in m_y$-αO(Y), f is not M-α-quotient mapping.

Remark 1.7.17

We obtain the following diagram from the above discussions.

\[\text{Diagram} \]

Where $A \leftrightarrow B$ means that A does not necessarily imply B and, moreover,

\begin{align*}
\text{(1)} & \quad M$-$\alpha$-irresolute mapping. \\
\text{(2)} & \quad M$-$\alpha^*$-quotient mapping. \\
\text{(3)} & \quad \text{Strongly } M$-$\alpha$-quotient mapping. \\
\text{(4)} & \quad M$-$\alpha$-continuous mapping. \\
\text{(5)} & \quad M$-$\alpha$-quotient mapping. \\
\text{(6)} & \quad M$-quotient mapping. \]