LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Legend</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Properties of Iso-octane</td>
<td>5</td>
</tr>
<tr>
<td>3.1.</td>
<td>List of Species</td>
<td>53</td>
</tr>
<tr>
<td>3.2.</td>
<td>Simplified Model</td>
<td>63</td>
</tr>
<tr>
<td>5.1.</td>
<td>The effect of ignition delay time for mixture with N2=79%, P=10atm, PHI=0.3</td>
<td>119</td>
</tr>
<tr>
<td>5.2.</td>
<td>The effect of ignition delay time for mixture with N2=79%, P=20atm, PHI=0.3</td>
<td>120</td>
</tr>
<tr>
<td>5.3.</td>
<td>The effect of ignition delay time for mixture with N2=79%, P=40atm, PHI=0.3</td>
<td>120</td>
</tr>
<tr>
<td>5.4.</td>
<td>The effect of ignition delay time for mixture with N2=79%, P=10atm, PHI=0.6</td>
<td>121</td>
</tr>
<tr>
<td>5.5.</td>
<td>The effect of ignition delay time for mixture with N2=79%, P=20atm, PHI=0.6</td>
<td>121</td>
</tr>
<tr>
<td>5.6.</td>
<td>The effect of ignition delay time for mixture with N2=79%, P=40atm, PHI=0.6</td>
<td>122</td>
</tr>
<tr>
<td>Appendix1.</td>
<td>Thermodynamic data base for the species used in modeling analysis</td>
<td>155</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Legend</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>1.1</td>
<td>Linking of Cantera to Matlab</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Validation of the reaction mechanism</td>
<td>110</td>
</tr>
<tr>
<td>4.2</td>
<td>Ignition Time Sensitivity</td>
<td>113</td>
</tr>
<tr>
<td>5.1</td>
<td>Ignition criteria</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>Temperature profile</td>
<td>117</td>
</tr>
<tr>
<td>5.3</td>
<td>Ignition time definition for iso-octane</td>
<td>118</td>
</tr>
<tr>
<td>5.4</td>
<td>Variation of ignition delay with temperature</td>
<td>123</td>
</tr>
<tr>
<td>5.5</td>
<td>Variation of ignition delay with temperature</td>
<td>123</td>
</tr>
<tr>
<td>5.6</td>
<td>Variation of ignition delay with equivalence ratio</td>
<td>125</td>
</tr>
<tr>
<td>5.7</td>
<td>Variation of Temperature with Equivalence ratio</td>
<td>125</td>
</tr>
<tr>
<td>5.8</td>
<td>Kinetic profile (PHI=0.5)</td>
<td>127</td>
</tr>
<tr>
<td>5.9</td>
<td>Kinetic profile (PHI=1)</td>
<td>127</td>
</tr>
<tr>
<td>5.10</td>
<td>Kinetic profile (PHI=1.5)</td>
<td>128</td>
</tr>
<tr>
<td>5.11</td>
<td>Kinetic profile (PHI=2)</td>
<td>128</td>
</tr>
<tr>
<td>5.12</td>
<td>Variation of CO concentration against Nitrogen diluent</td>
<td>130</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.13</td>
<td>Variation of CH concentration against Nitrogen diluent</td>
<td>130</td>
</tr>
<tr>
<td>5.14</td>
<td>Variation of C\textsubscript{2}H concentration against Nitrogen diluent</td>
<td>131</td>
</tr>
<tr>
<td>5.15</td>
<td>Variation of C\textsubscript{2}H\textsubscript{2} concentration against Nitrogen diluent</td>
<td>131</td>
</tr>
<tr>
<td>5.16</td>
<td>Variation of C\textsubscript{3}H\textsubscript{3} concentration against Nitrogen diluent</td>
<td>132</td>
</tr>
<tr>
<td>5.17</td>
<td>Variation of CO\textsubscript{2} concentration against Nitrogen diluent</td>
<td>132</td>
</tr>
<tr>
<td>5.18</td>
<td>Variation of O\textsubscript{2} concentration against Nitrogen diluent</td>
<td>133</td>
</tr>
<tr>
<td>5.19</td>
<td>Species Concentration Profile</td>
<td>140</td>
</tr>
<tr>
<td>5.20</td>
<td>Variation with O\textsubscript{2} (lean mixture)</td>
<td>141</td>
</tr>
<tr>
<td>5.21</td>
<td>Variation with O\textsubscript{2} (Stoichoimetric mixture)</td>
<td>141</td>
</tr>
<tr>
<td>5.22</td>
<td>Variation with O\textsubscript{2} (Rich mixture)</td>
<td>142</td>
</tr>
<tr>
<td>5.23</td>
<td>Variation with OH (Stoichoimetric mixture)</td>
<td>143</td>
</tr>
<tr>
<td>5.24</td>
<td>Variation with OH (lean mixture)</td>
<td>143</td>
</tr>
<tr>
<td>5.25</td>
<td>Variation with OH (Rich mixture)</td>
<td>144</td>
</tr>
<tr>
<td>5.26</td>
<td>Reaction path way of C</td>
<td>145</td>
</tr>
<tr>
<td>5.27</td>
<td>Reaction path way of H</td>
<td>146</td>
</tr>
<tr>
<td>5.28</td>
<td>Reaction path way of O</td>
<td>147</td>
</tr>
</tbody>
</table>