CONTENTS

Preface

Chapter 1: An Overview of Non-linear Optics and Crystal Growth
 1.1 Introduction 03
 1.2 Origin of optical non-linearity 06
 1.3 Non-linear optical materials 08
 1.4 Survey on non-linear optical crystals 11
 1.5 Applications of non-linear optical crystals 12
 1.5.1 Frequency conversion 13
 1.5.2 Frequency up conversion 14
 1.5.3 Parametric amplification 15
 1.5.4 Parametric oscillation 15
 1.6 Material requirements 17
 1.7 Methods and mechanism 18
 1.8 Growth methods 19
 1.8.1 Growth from melt 19
 1.8.2 Growth from solution 21
 1.8.3 Vapour growth 26
 1.9 Crystal growth theory 26
 1.10 Aims and objectives of the present work 28
 References 31

Chapter 2: Growth of Thiourea mixed Ammonium Dihydrogen Phosphate (ADP) crystal
 2.1 Introduction 43
<table>
<thead>
<tr>
<th>Chapter 3: Characterization of Thiourea mixed ADP crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
</tr>
<tr>
<td>3.2 EDX analysis</td>
</tr>
<tr>
<td>3.3 X-ray diffractometry</td>
</tr>
<tr>
<td>3.3.1 Powder X-ray diffraction method</td>
</tr>
<tr>
<td>3.3.2 Instrumentation for XRD</td>
</tr>
<tr>
<td>3.3.3 Powder X-ray diffraction of TADP crystal</td>
</tr>
<tr>
<td>3.4 Spectroscopic methods</td>
</tr>
<tr>
<td>3.4.1 Infrared spectroscopy</td>
</tr>
<tr>
<td>3.4.1.1 IR Instrumentation</td>
</tr>
<tr>
<td>3.4.1.2 FTIR,Study of TADP crystals</td>
</tr>
<tr>
<td>3.4.2 Raman spectroscopy</td>
</tr>
<tr>
<td>3.4.2.1 Raman instrumentation</td>
</tr>
<tr>
<td>3.4.2.2 Laser Raman Spectra of TADP crystal</td>
</tr>
<tr>
<td>3.5 Thermal analysis</td>
</tr>
<tr>
<td>3.5.1 Instrumentation for TG/DTA and DSC</td>
</tr>
<tr>
<td>3.5.2 TG/DTA and DSC of TADP crystals</td>
</tr>
</tbody>
</table>
Chapter 4: Optical and electrical properties of TADP crystal

4.1 Linear optical properties
 4.1.1 UV VIS Absorption spectra of TADP crystals
 4.1.2 Absorption coefficient
 4.1.3 Optical energy gap
 4.1.4 Refractive index and phase matching angle
 4.1.5 Refractive index and phase matching angle of TADP crystal

4.2 Non-linear optical properties
 4.2.1 Laser damage studies of TADP crystal

4.3 Dielectric studies of TADP crystal
 4.3.1 Variation of dielectric constant and dielectric loss with temperature
 4.3.2 Variation of dielectric constant and dielectric loss with frequency

4.4 Electrical conductivity studies of TADP crystal
 4.4.1 AC conductivity studies
 4.4.1.1 Variation of AC conductivity with Temperature
 4.4.1.2 Variation of AC conductivity with frequency
 4.4.2 DC conductivity studies
4.5 Conclusion

References

Chapter 5: Structural investigations of thiourea mixed ADP crystal

5.1 Introduction

5.2 Single crystal X-ray diffraction technique
 5.2.1 XRD Instrumentation
 5.2.2 Single crystal XRD of TADP crystal

5.3 Conclusion

References

Chapter 6: Crystal growth, optical and structural properties of Thiourea mixed Antimony Bromide

6.1 Introduction

6.2 Crystal Growth and characterization
 6.2.1 Chemical analysis, EDX, Morphological studies
 6.2.2 X-ray diffraction studies
 6.2.3 Thermal properties
 6.2.4 Density

6.3 Optical properties
 6.3.1 Refractive index
 6.3.2 Optical Energy gap
 6.3.3 Transmittance
 6.3.4 Non-linear optical properties

6.4 Structural properties
 6.4.1 Spectroscopic studies
Chapter 7: Crystal growth and characterization of Thiourea mixed Bismuth Chloride

7.1 Introduction 191

7.2 Crystal Growth and characterization 191

7.2.1 Chemical analysis, EDX, Morphological studies 192

7.2.2 X-ray diffraction studies 195

7.2.3 Thermal properties 196

7.3 Optical properties 197

7.3.1 Refractive index 198

7.3.2 Optical Energy gap 200

7.3.3 Transmittance 201

7.3.4 Non-linear optical properties 202

7.4 Electrical and Dielectric properties 203

7.5 Structural properties 208

7.5.1 Single crystal X-ray diffractometry 208

7.5.2 FTIR and Laser Raman studies 217

7.6 Conclusion 220

References 222
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>8.2</td>
<td>Glycine salts and complexes</td>
<td>228</td>
</tr>
<tr>
<td>8.3</td>
<td>Experimental</td>
<td>229</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Crystal growth</td>
<td>229</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Growth kinetics and morphological studies</td>
<td>230</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Chemical analysis</td>
<td>232</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Density determination</td>
<td>232</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Powder XRD</td>
<td>233</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Solubility</td>
<td>234</td>
</tr>
<tr>
<td>8.3.7</td>
<td>Metastable zone width</td>
<td>235</td>
</tr>
<tr>
<td>8.3.8</td>
<td>Refractive index measurements</td>
<td>236</td>
</tr>
<tr>
<td>8.3.9</td>
<td>Mechanical properties</td>
<td>239</td>
</tr>
<tr>
<td>8.3.10</td>
<td>Transmittance and laser Raman spectroscopic studies</td>
<td>239</td>
</tr>
<tr>
<td>8.3.11</td>
<td>Optical energy gap of GSN crystal</td>
<td>244</td>
</tr>
<tr>
<td>8.3.12</td>
<td>Thermal properties</td>
<td>244</td>
</tr>
<tr>
<td>8.3.13</td>
<td>Non-linear optical properties</td>
<td>246</td>
</tr>
<tr>
<td>8.4</td>
<td>Electrical and Dielectric properties</td>
<td>249</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Variation of dielectric constant with frequency</td>
<td>249</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Variation of dielectric constant with temperature</td>
<td>251</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Variation of dielectric loss with frequency</td>
<td>252</td>
</tr>
<tr>
<td>8.4.4</td>
<td>AC conductivity measurements</td>
<td>252</td>
</tr>
<tr>
<td>8.5</td>
<td>Crystal structure of GSN</td>
<td>254</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>263</td>
</tr>
</tbody>
</table>
Chapter 9: Crystal Growth and Characterization of
Glycine mixed Barium Chloride

9.1 Introduction 266
9.2 Crystal Growth and characterization 266
 9.2.1 Chemical analysis 269
 9.2.2 Solubility 270
 9.2.3 Powder X-ray diffraction 271
 9.2.4 Hardness 273
 9.2.5 FTIR Studies 273
9.3 Optical properties 276
 9.3.1 Refractive index 276
 9.3.2 Optical energy gap 280
 9.3.3 Transmission Spectra 280
 9.3.4 Non-linear optical properties 281
9.4 Thermal properties 283
9.5 Crystal structure 285
9.6 Dielectric properties 286
9.7 Conclusion 290
References 291

Chapter 10: General conclusions and scope for future research

10.1 Introduction 295
10.2 General conclusions 295
10.3 Scope for future work 301