Summary
Transdermal drug delivery is gaining interest in recent times because of its non-invasive nature and broad scope of potential applications in treating human diseases. To overcome the superficial stratum corneum barrier of skin, various percutaneous enhancement technologies are being explored such as use of chemical, bio-chemical or physical enhancers. Iontophoresis, sonophoresis and hyperthermia are the physical methods of enhancing percutaneous absorption of drugs.

The present study explores the possibility of employing the above mentioned novel physical approaches for enhancing the transdermal penetration of ketorolac tromethamine (a non-steroidal analgesic and anti-inflammatory agent) for either local or systemic delivery.

In order to investigate the effect of iontophoresis, sonophoresis and hyperthermia on in vitro transport of ketorolac tromethamine, suitable diffusion cells were designed and fabricated. The fabricated cells included both horizontal and vertical two-compartment models. To achieve uniform stirring of the donor and receptor solutions and to avoid maintenance of non-sink condition, a mini magnetic stirring device was developed. The mini magnetic stirring device was found to be very useful as it provided the cost-effective alternative to conventional means of stirring.

Because of absence of suitable iontophoresis devices in Indian market, an effort was made to develop 'indigenously' portable iontophoresis unit. Initially, an iontophoresis unit powered by electrical supply from household current was developed. Further to improve the elegance and considering the safety aspects, the device was modified to a 'miniatured' iontophoresis device, powered by battery supply. This low powered transitorised circuitry made the device safe and attractive not only for experimental application but also for clinical use. The device offered variety of features for regulation of various parameters such as current density, frequency, on:off ratio and selection of pulsed mode. In the present work, this device has been used for optimisation of iontophoretic parameters, both in vitro and in vivo during experimental studies and also in clinical set up. The device becomes promising both for researchers as well as clinicians because of its robustness, miniature size and control of various features tailored to the needs of individuals. For acceptance of iontophoresis as a method of drug delivery, such
lightweight iontophoresis devices capable of providing an easy direct application to the skin is desirable.

In the initial phase, effect of iontophoresis on membrane transport of ketorolac was studied using synthetic cellulose membrane. This model permitted the determination of optimal conditions of iontophoretic mobility of ketorolac with a constant quality membrane that offers no resistance to ion movements. The parameters evaluated using synthetic membrane were - effect of current density, drug concentration, buffer composition (and pH) and viscosity of the donor solution. The results of synthetic membrane studies indicated that higher iontophoretic transport of ketorolac was obtained when no extraneous ions (such as NaCl) were present in donor solution. The flux of ketorolac increased linearly with the current density. However, a decrease in drug concentration or an increase in viscosity slowed down the iontophoretic transport of ketorolac. Comparison of the total flux under iontophoresis with sum of passive and iontophoretic contribution indicated that these two contributions could justify the value of total flux measured. Further, the electro-osmotic contribution if any, during iontophoretic transport through cellulose membrane was investigated using glucose as a neutral molecule. The application of current did not modify the flux of glucose confirming the absence of electro-osmotic flux.

In the second phase of studies, iontophoretic penetration of ketorolac through hairless rat skin was investigated. Application of iontophoresis significantly enhanced the skin penetration of ketorolac. Maximal iontophoretic transport was observed when low ionic strength McIlvaine buffer (0.06 M, pH 7.4) was used as donor solution. The choice of electrode material or diffusion cell design did not influence the iontophoretic permeation of drug. Constant DC was found be more potent than pulse DC in enhancing the penetration of drug. With pulse current, increasing the on:off ratio of pulse or frequency increased the penetration of drug. Increasing the drug load in donor compartment significantly enhanced the penetration of drug. The duration of iontophoresis was also found to be important. Flux was greater when iontophoresis was applied for 6h instead of 1 or 4h. Termination of current application did not cause the flux to return immediately to the passive control level. Pretreatment of the skin with chemical enhancer, d-limonene (5% in ethanol), significantly enhanced the iontophoretic permeation of
ketorolac. Further enhancement in flux was observed when chemical enhancer pretreatment (d-limonene/ethanol) was combined with ultrasound pretreatment.

In order to evaluate the use of pulse current modality with optimal transport conditions, a factorial design based experiment was conducted. The results of experimental design indicated the positive contribution of drug load and increasing on:off ratio of pulse current on iontophoretic transport while increasing donor ionic strength (of buffer) resulted in negative effect on flux.

The results of phase III studies (in vivo pharmacokinetic studies in rat) indicated that significant concentration of ketorolac could be detected in serum following iontophoresis. After, 1h of iontophoresis, 1969 ng/ml of ketorolac was detected in serum. The half-life of drug following iontophoretic delivery was found to be 6.29h with an elimination rate constant of 0.11h⁻¹. This indicates that iontophoresis can be used to deliver ketorolac tromethamine transdermally. This fact can also be utilised to achieve maximal concentration of drug in localised area for management of painful conditions such as muscle or joint pain.

Application of sonophoresis (1 MHz, 3 watts/cm²) also significantly enhanced the flux of ketorolac across hairless rat skin in vitro. The observed enhancement in flux was minimal when compared with iontophoresis. Use of lower intensities of ultrasound did not result in enhancement of flux. The increase in flux with sonophoresis was found to be primarily because of temperature rise of donor solution during sonophoresis since controlling the temperature of donor solution resulted in flux values similar to passive (with ultrasound) flux.

Combination of hyperthermia (increased temperature) and chemical enhancer pretreatment (5% d-limonene in ethanol) also resulted in enhanced flux of ketorolac across hairless rat skin in vitro. Enhancement in flux was maximal when higher temperature (42 °C) was applied in combination with chemical enhancer pretreatment. The enhanced penetration following combination of hyperthermia and enhancer pretreatment may be beneficial for better local delivery of ketorolac for management of local pain or inflammation.
In an attempt to explore the clinical applications of iontophoresis and sonophoresis, few studies were undertaken. Iontophoresis of lignocaine was examined for inducing anaesthesia to facilitate tooth extraction in children. Lignocaine iontophoresis was accomplished using special clip electrodes along with cotton gauze soaked in lignocaine hydrochloride solution. The procedure required only 5-10 minutes and was found to be an important alternative to avoid painful injection of lignocaine. Use of suitable electrodes and inclusion of penetration enhancer was found to induce rapid anaesthesia.

Another clinical application of iontophoresis was development of modified sweat chloride test for diagnosis of cystic fibrosis. The pilocarpine iontophoresis sweat test was modified suitably and was employed to screen patients susceptible of cystic fibrosis. Out of 120 patients, three patients could be diagnosed for cystic fibrosis which were further confirmed by clinical manifestations. This study is particularly important because there are very few cases of cystic fibrosis reported in India, which could be attributed to the absence of proper diagnostic tool such as sweat test.

Methotrexate iontophoresis was explored as an alternative treatment for refractory palmoplantar psoriasis (PPP) in a 46 year old male patient. The patient had the disease on both palms. Four treatments at weekly intervals were given to right palm, while left palm served as control. The right palm showed considerable improvement compared to the left palm.

Clinical application of sonophoresis was examined for treatment of localised painful conditions. Ultrasound treatment in combination with topically applied analgesics/anti-inflammatory agents was evaluated in a double blind placebo controlled clinical trial. Sonophoresis of ketorolac was found to be effective clinically in resolving soft tissue injury/pain as compared to sonophoresis of nimesulide, diclofenac or placebo gels.

In order to further explore the application of one of the above mentioned physical modality i.e. hyperthermia in drug delivery, temperature sensitive liposomes, which would release the drug only to heated area (localised hyperthermia) were formulated. The approach of combining hyperthermia and temperature sensitive liposomes may result in targeted delivery of drug and hence enhance the efficacy of drug. This is particularly
important in delivery of cytotoxic drugs to localised tumour sites. To explore this novel approach, in the present study, thermosensitive liposomes of bleomycin and plumbagin, anti-cancer agents, were prepared and the formulations were evaluated in vivo in combination with localised hyperthermia (43 °C) in mice bearing tumour. The liposomes were designed to release their contents at 41 °C using a suitable mixture of synthetic phospholipids, dipalmitoyl phosphatidylcholine and disteroyl phosphatidylcholine. The liposomes were characterized for size and entrapment efficiency. The results of in vitro release test at various temperatures indicated that the maximum release occurred at 42 °C and only a smaller fraction of drug was released at physiological temperature. When evaluated in vivo in mice bearing melanoma B16F1 in combination with localised hyperthermic treatment of tumour, thermosensitive liposomes resulted in enhanced antitumour activity as evidenced by enhanced tumour volume doubling time and growth delay. The enhanced antitumour activity might be attributed to the targeted delivery of the drug and interaction of hyperthermia and drug leading to increased cytotoxicity. These results suggest that localised hyperthermia in combination with temperature sensitive liposomes encapsulating either bleomycin or plumbagin may serve as a useful targeted drug delivery system for management of localised accumulation of tumours such as melanoma B16F1.
Appendix-I: List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Compounds that have been iontophoresed</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Compounds that have been phonophoresed</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Effect of hyperthermia on transport of drugs across biological and synthetic membranes</td>
<td>29</td>
</tr>
<tr>
<td>4.</td>
<td>Standard plot data of ketorolac tromethamine in isotonic Sorensen phosphate buffer (pH 7.4)</td>
<td>48</td>
</tr>
<tr>
<td>5.</td>
<td>Transport parameters of ketorolac through cellulose membranes</td>
<td>54</td>
</tr>
<tr>
<td>6.</td>
<td>Effect of ketorolac concentration on transport number</td>
<td>56</td>
</tr>
<tr>
<td>7.</td>
<td>Total flux of ketorolac through cellulose membrane in iontophoretic experiments: passive and electric contribution</td>
<td>58</td>
</tr>
<tr>
<td>8.</td>
<td>Effect of current density on rate of permeation of ketorolac through hairless rat skin</td>
<td>67</td>
</tr>
<tr>
<td>9.</td>
<td>Effect of ionic strength of donor solution on the iontophoretic transport of ketorolac across hairless rat skin</td>
<td>69</td>
</tr>
<tr>
<td>10.</td>
<td>Effect of frequency of pulse current (50% on:off) on ketorolac permeation through hairless rat skin</td>
<td>75</td>
</tr>
<tr>
<td>11.</td>
<td>Effect of loading dose on iontophoretic transport of ketorolac through hairless rat skin</td>
<td>76</td>
</tr>
<tr>
<td>12.</td>
<td>Effect of ketorolac loading dose on efficiency of iontophoresis through hairless rat skin</td>
<td>77</td>
</tr>
<tr>
<td>13.</td>
<td>Effect of pretreatment with chemical/physical enhancers on iontophoretic permeation of ketorolac through hairless rat skin</td>
<td>79</td>
</tr>
<tr>
<td>14.</td>
<td>Experimental design layout (Combined effect of permeation parameters)</td>
<td>82</td>
</tr>
<tr>
<td>15.</td>
<td>Peak response of the standard solutions</td>
<td>88</td>
</tr>
<tr>
<td>16.</td>
<td>In vivo pharmacokinetic studies for iontophoretic delivery of ketorolac</td>
<td>88</td>
</tr>
<tr>
<td>17.</td>
<td>In vitro sonophoresis of ketorolac across hairless rat skin: steady state flux and permeability coefficients</td>
<td>93</td>
</tr>
<tr>
<td>18.</td>
<td>Effect of temperature control of donor compartment on in vitro sonophoresis of ketorolac across hairless rat skin</td>
<td>96</td>
</tr>
<tr>
<td>19.</td>
<td>Combined effect of temperature and pretreatment with d-limonene/ethanol on the skin permeation rate of ketorolac</td>
<td>99</td>
</tr>
<tr>
<td>20.</td>
<td>Effect of storage conditions on stability of bleomycin and plumbagin thermosensitive liposomes</td>
<td>112</td>
</tr>
<tr>
<td>21.</td>
<td>Antitumour efficacy of free and liposomal bleomycin with or without hyperthermia in mice bearing melanoma B16F1</td>
<td>113</td>
</tr>
<tr>
<td>22.</td>
<td>Antitumour efficacy of free and liposomal plumbagin with or without hyperthermia in mice bearing melanoma B16F1</td>
<td>115</td>
</tr>
</tbody>
</table>
Table 23. Indications for cystic fibrosis sweat testing

Table 24. Various groups for iontophoresis (lignocaine iontophoresis in paedriatic dentistry)

Table 25. Pain scores of patients after phonophoresis with diclofenac sodium, ketorolac tromethamine, nimesulide and placebo gels.
Appendix J: List of Figures

Figure 1. Schematic diagram of iontophoretic process
Figure 2. Two-compartment horizontal diffusion cell used for in vitro iontophoresis studies.
Figure 3. Vertical Franz type diffusion cell for in vitro sonophoresis
Figure 4. Horizontal two-compartment diffusion cell (jacketed) for in vitro hyperthermia.
Figure 5. Illustrative diagram for design of mini magnetic stirrers
Figure 6. Mini magnetic stirrers in diffusion studies
Figure 7. Multiport stirring device
Figure 8. Classical iontophoresis device
Figure 9. Portable iontophoresic device powered by electrical (household current) supply
 (a) Front view
 (b) Rearview
Figure 10. Internal circuit diagram of iontophoresis device
Figure 11. Miniatured battery operated iontophoresis device
Figure 12. Constant current circuit for miniaturized device.
Figure 13. Opening screen menu (PC) of software developed for pulse square wave generation and impedance measurement
Figure 14. Standard plot of ketorolac tromethamine in isotonic Sorensen phosphate buffer (pH 7.4)
Figure 15. (a) Experimental set up for in vitro iontophoresis
 (b) Experimental set up for measuring voltage drop across the membrane (Four electrode system)
Figure 16. Plot of flux of ketorolac through a cellulose membrane versus current density
Figure 17. Plot of flux of ketorolac through the cellulose membrane versus current density (effect of drug concentration)
Figure 18. Flux of glucose as a function of current density
Figure 19. Plot of cumulated quantity of ketorolac and glucose transported across a cellulose membrane
Figure 20. Plot of cumulated quantity of ketorolac detected in the receptor compartment versus time after application of current density
Figure 21. Plot of flux of ketorolac through cellulose membrane versus current density (effect of viscosity)
Figure 22. Effect of current on permeation of ketorolac through hairless rat skin
Figure 23. Plot of flux of ketorolac versus current density
Figure 24. Effect of ionic strength of donor buffer on permeation of ketorolac through hairless skin
Figure 25. Plot of flux of ketorolac through hairless rat skin versus activity coefficient (effect of ionic strength)

Figure 26. Effect of electrode material on ketorolac permeation through hairless rat skin.

Figure 27. Effect of type of current on permeation of ketorolac through hairless rat skin.

Figure 28. Effect of on:off ratio of pulse current on permeation of ketorolac through hairless rat skin.

Figure 29. Effect of loading dose of ketorolac on iontophoretic permeation through hairless rat skin.

Figure 30. Relationship between iontophoretic flux and ketorolac loading dose.

Figure 31. Effect of type of current on permeation of ketorolac through hairless rat skin.

Figure 32. Effect of on:off ratio of pulse current on permeation of ketorolac through hairless rat skin.

Figure 33. Response surface plot representing calculated values of flux obtained from the response surface equation.

Figure 34. Contour plot.

Figure 35 (a). Chromatogram of standard solution.

(b). Chromatogram of plasma solution.

Figure 36. Calibration curve of ketorolac tromethamine in plasma (HPLC).

Figure 37 (a). Experimental set up for in vitro sonophoresis.

(b). Experimental set up for temperature control of donor compartment (in vitro sonophoresis).

Figure 38. Effect of ultrasound on permeation of ketorolac through hairless rat skin.

Figure 39. Increase in temperature in donor compartment during sonication.

Figure 40. Experimental set up for in vitro hyperthermia.

Figure 41. Combined effect of d-limonene/ethanol and temperature on the skin permeation of ketorolac.

Figure 42. Standard plot of bleomycin in isotonic phosphate buffered saline (pH 7.4).

Figure 43. Standard plot of plumbagin in isotonic phosphate buffered saline (pH 7.4).

Figure 44. Animals (mice) restrained on a Perpex tray, tumours protruding below.

Figure 45. Experimental set up showing hyperthermia treatment to mice bearing tumours.

Figure 46. Negative stain electron micro graph of LUV's.

Figure 47. In vitro release patterns of thermosensitive liposomes at various temperatures in phosphate buffered saline.

Figure 48. Negative stain electron micro graph of SUV's.
Figure 49. Schematic view of local drug release from "temperature sensitive" liposomes 116
Figure 50. Collection of sweat from forearm by pilocarpine iontophoresis 124
Figure 51. Active clip electrode and indifferent cheek electrode 128
Figure 52 (a). Iontophoresis unit completely connected for use in paediatric dentistry for lignocaine iontophoresis 130
 (b). The clip electrode (+ ve) placed over the area of tooth to be anaesthetised 130
Figure 53. Iontophoresis of methotrexate to psoriatic palms 136
Figure 54. After treatment, the right palm lesions healed substantially 136
Figure 55. Reduction in pain threshold after phonophoresis with diclofenac sodium, ketorloac tromethamine, nimesulide and placebo gels 142