LIST OF FIGURES

Figure 1. Tectonic map of the Ganga Basin and adjoining areas (mainly compiled from the tectonic map of India, 1968, provided by the oil and natural gas commission).

Figure 2. Location Map of the Study Area.

Figure 3. Lithostratigraphic sections measured near Anoopshahr.

Figure 4. Lithostratigraphic sections measured near Narora.

Figure 5. Lithostratigraphic sections measured near Rajghat.

Figure 6. Lithostratigraphic sections measured near Rajghat.

Figure 7. Lithostratigraphic sections measured near Kacchla.

Figure 8. Lithostratigraphic sections measured near Kacchla.

Figure 9. Lithostratigraphic sections measured near Mahavan.

Figure 10. Lithostratigraphic sections measured near Shergarh.

Figure 11. Lithostratigraphic sections measured near Virindavan.

Figure 12. Lithostratigraphic sections measured near Virindavan.

Figure 13. Bivariant plot of (a)Mean size versus roundness (b) Mean size versus skewness (c) Mean size versus roundness (d) Mean size versus mean sphericity (e) Mean roundness versus sorting) (f) Mean sphericity versus sorting.

Figure 14. Bivariant plot of (a)Mean size versus roundness (b) Mean size versus skewness (c) Mean size versus roundness (d) Mean size versus mean sphericity (e) Mean roundness versus sorting) (f) Mean sphericity versus sorting.

Figure 15. Bivariant plot of (a)Mean size versus roundness (b) Mean size versus skewness (c) Mean size versus roundness (d) Mean size versus mean sphericity (e) Mean roundness versus sorting) (f) Mean sphericity versus sorting.

Figure 16. Bivariant plot of (a)Mean size versus roundness (b) Mean size versus skewness (c) Mean size versus roundness (d) Mean size versus mean sphericity (e) Mean roundness versus sorting) (f) Mean sphericity versus sorting.

Figure 17. Bivariant plot of (a)Mean size versus roundness (b) Mean size versus skewness (c) Mean size versus roundness (d) Mean size versus mean sphericity (e) Mean roundness versus sorting) (f) Mean sphericity versus sorting.
Figure 18. Bivariant plot of (a) Mean size versus roundness (b) Mean size versus skewness (c) Mean size versus roundness (d) Mean size versus mean sphericity (e) Mean roundness versus sorting (f) Mean sphericity versus sorting.

Figure 19. Bivariant plot of (a) Mean size versus roundness (b) Mean size versus skewness (c) Mean size versus roundness (d) Mean size versus mean sphericity (e) Mean roundness versus sorting (f) Mean sphericity versus sorting.

Figure 20. Classification of the sediments of Ganga and Yamuna river Ganga Central Plain, according to Folk (1980).

Figure 21. Qt-F-L plot of Ganga and Yamuna river sediments, according to Dickinson (1985).

Figure 22. Qm-F-Lt plot of Ganga and Yamuna river sediments, according to Dickinson (1985).

Figure 23. Qp-Lv-Ls plot of Ganga and Yamuna river sediments, according to Dickinson (1985).

Figure 24. Qm-P-K plot of Ganga and Yamuna river sediments, according to Dickinson (1985).

Figure 25. Al_2O_3 versus major oxides covariation diagram of Ganga sediments indicating clay minerals control on their concentration.

Figure 26. Bivariant K_2O versus Rb, Sr, Ba and Th diagram indicating role of clay minerals for their concentration in Ganga sediments.

Figure 27. Bivariant Al_2O_3 versus transitional element diagram of Ganga sediments.

Figure 28. Covariation diagram between MgO and transitional elements of Ganga sediments.

Figure 29. $(\text{Gd/Yb})_n$ versus trace and major elements of Ganga sediments.

Figure 30. Chondrite normalized REE diagram of Ganga sediments. (Normalizing values after Sun and McDonough, 1989).

Figure 31. Avarage Upper Continental Crust (UCC) and Post Archean Australian Shale (PAAS) normalized major and trace elements of Ganga sediments.

Figure 32. Avarage Upper Continental Crust (UCC) and Post Archean Australian Shale (PAAS) normalized average REE of Ganga.

Figure 33. Al_2O_3 versus major oxides covariation diagram of Yamuna sediment indicating clay minerals control on their concentration.
Figure 34. Bivariant K$_2$O versus Rb, Sr, Ba and Th diagram indicating role of clay minerals for their concentration in Yamuna sediments.

Figure 35. Bivariant Al$_2$O$_3$ versus transitional element diagram of Yamuna sediments.

Figure 36. Covariation diagram between MgO and transitional elements of Yamuna sediments.

Figure 37. Chondrite normalized REE diagram of Yamuna sediments. (Normalizing values (after Sun and McDonough, 1989).

Figure 38. (Gd/Yb)$_n$ versus major and trace elements of Yamuna sediments.

Figure 39. Average Upper Continental Crust (UCC) and Post Archean Australian Shale (PAAS) normalized major and trace elements of Yamuna sediments.

Figure 40. Average Upper Continental Crust (UCC) and Post Archean Australian Shale (PAAS) normalized REEs of Yamuna sediments.

Figure 41. Al$_2$O$_3$ – (CaO+Na$_2$O) – K$_2$O diagram for Ganga and Yamuna river sediments most of the sediments samples plot around UCC and TTG, suggesting a low to moderate weathering history for the provenance, Ka, Kaolinite; Gi, Gibbsite; Chl, Chlorite; pl, plagioclase; ksp, k-feldspar. Data of UCC and PAAS (Sun and McDonough, 1989); tonalite-trondhjemite-granodiorite (TTG) and granite (Condie, 1993); Metasediments (Rashid, 2005); leucogranite and metasediments (Ayres and Harris, 1997); sillimanite – gneiss and kyaniteschist (Harris et al; 1992); Paleozoic granites (Miller et al; 2001)

Figure 42. Al$_2$O$_3$ versus K$_2$O diagram showing distribution of Ganga and Yamuna sediments samples close to illite line (Cox et al; 1995).

Figure 43. Plots of Th/U versus Th for the Ganga (a) and Yamuna(b) sediments (after McLennan et al; 1993). Values of UCC, PAAS and NASC from (Sun and McDonough, 1989).

Figure 44,45. TiO$_2$ versus Al$_2$O$_3$/TiO$_2$ and Al$_2$O$_3$ versus Al$_2$O$_3$/TiO$_2$ for the Ganga (44a,45a) and Yamuna (44b,45b) sediment samples.

Figure 46: Discriminant function diagram for Ganga (a) and Yamuna sediments (b) of Roser and Korsch, 1988. F1=(-1.773 TiO$_2$ + 0.607 Al$_2$O$_3$ + 0.76 (Fe$_2$O$_3$)f -1.5 MgO + 0.616 CaO + 0.509 Na$_2$O -1.224 K$_2$O-9.09) and F2 = (0.445 TiO$_2$ + 0.07 Al$_2$O$_3$-0.25 (Fe$_2$O$_3$)f -1.142 MgO + 0.438 CaO + 1.475 Na$_2$O + 1.426 K$_2$O-6.861).

Figure 47. Th/Sc versus Zr/Sc variation diagram of Ganga(a) and Yamuna (b) indicating their crustal source.
Figure 48. Th/Sc versus La/Sc plot for Ganga (a) and Yamuna (b) sediments for reference the data of Paleozoic granites from Higher Himalayan crystalline series (HHCS) (Miller et al; 2005), Metasediments from Lesser Himalayan (Rashid, 2005), Average Proterozoic granites, Tonalite – trondhjemite – granodiorite (TTG) and Basalt data from (Chondie, 1993)

Figure 49. K$_2$O/Na$_2$O versus SiO$_2$/Al$_2$O$_3$ ratio – ratio diagram of Ganga (a) and Yamuna(b)sediments suggesting their passive margin tectonic setting (after Maynard et al; 1982). A1-arc setting and andesitic detritus; A2 – evolved arc setting, felsic pluton detritus ACM- Active continental margin; PM – passive margin.

Figure 50. La-Th-Sc ternary plot for Ganga (a) and Yamuna (b) sediments. Fields are after (Bhatia and Crook, 1986). For reference the TTG, Granite and UCC, basalt, leucogranite HHCS, Proterozoic granite are plotted and their symbols are same as in Figure 41.