References

Burns, J. C., Parkers, T., Peristaltic Motion, J. Fluid Mech., 29 (1967), 4, pp. 731-743

Kumar, P., Lal, R., Stability of Two Superposed Viscous-Viscoelastic Fluids. Thermal Science, 9 (2005), 2, pp. 87-95

Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, Cal., USA, 1999

Rathod, V.P. and Mahadev, M. Effect of thickness of the porous material on the peristaltic pumping of a Jeffry fluid when the tube wall is provided with non-erodible porous lining. Int. J. of Mathematical Archive, 2(10), 1-10, 2011.

Rathod, V.P. and Mahadev, M. Effect of magnetic field on ureteral peristalsis in cylindrical tube, Ultra Scientist of Physical Sciences, 23, 135-142, 2011

Rathod, V.P. and Channakote, M.M. Interaction of heat transfer and peristaltic pumping of fractional second grade fluid through a vertical cylindrical tube, Thermal science, 18 (2014) 1109-1118.

Rathod, V.P. and Laxmi Devindrappa, Slip effect on peristaltic transport of a conducting fluid through a porous medium in an asymmetric vertical channel by adomian decomposition method. Int. J. Math Arch. 4 (2013) 133-141.

Rathod, V.P. and Laxmi Devindrappa, Effects of heat transfer on the peristaltic MHD flow of a Bingham Fluid through a porous medium in an inclined channel. Mathematical sciences international research journal, 3 (2014).

Rathod, V.P. and Anita Tuljappa, Peristaltic flow of a fractional second grade fluid through inclined cylindrical tube. Int. J. Mathematical Archive.6 (2015)29-46

Rathod, V.P. and Anita Tuljappa, Slip effect on the peristaltic flow of a fractional second grade fluid through a cylindrical tube. Advance in Applied Science Research AASR-2015, 6(3):101-111

Rathod, V.P. and Anita Tuljappa, Slip effect and magnetic field on the peristaltic flow of a fractional second grade fluid through a cylindrical tube. Journal of Chemical Biological and Physical Sciences, 5(2015) 1921-1934

Tripathi, D., A mathematical model for swallowing of food bolus through the oesophagus under the influence of heat transfer. Int. J. of Thermal science, 51 (2012), 99-101

Tan, W., Pan, W., Xu, Mi., A Note on Unsteady Flows of a Viscoelastic Fluid with the Fractional Maxwell Model between Two Parallel Plates, Int. J. of Non-Linear Mech., 38 (2003), 5, pp. 645-650

