CONTENTS

Chapter-1: INTRODUCTION

1.1 Introduction 01
1.2 Objective and scope of the work 07
1.3 Plan of action for Pharmacological activities 10
1.4 Review of Literature 11
1.5 References 15

Chapter-2: BIOLOGICAL STUDIES

2.1 Anti-inflammatory activity of *Abutilon indicum*, *Hygrophila spinosa* and *Smilax china*

2.1.1 General Introduction 21
2.1.2 Introduction to Inflammation 23
2.1.3 Experimental models for testing anti-inflammatory activity 32
2.1.4 Experimental models for evaluating anti-inflammatory activity 33
2.1.5 Plants with anti-inflammatory activity 35
2.1.6 Treatment of inflammation 38
2.1.7 Materials 38
2.1.8 Selection of animals 39
2.1.9 Preparation of Sodium carboxy methyl cellulose(Sod. CMC) suspension 39
2.1.10 Preparation of Carrageenan suspension 39
2.1.11 Preparation Drug suspension 39
2.1.12 Induction of paw edema 40
2.1.13 Measurement of Paw thickness 41
2.1.14 Experimental protocol 41
2.1.15 Evaluation of Model 42
2.1.16 Herbal formulation studies 45
2.1.17 Development of herbal Tablet 46
2.1.18 Preparation of Tablets (TFI-TFVI) 46
2.1.19 Determination of Micromeritic properties 47
2.1.20 Results and Discussion 59
2.1.21 References 62

2.2 Antihepatotoxic activity of *Abutilon indicum*, *Hygrophila spinosa* and *Smilax china*

2.2.1 Introduction 66
2.2.2 Experimental models for evaluating hepatoprotective activity 67
2.2.3 Mechanism of action of CCL\textsubscript{4} 69

2.2.4 Estimation of Serum Glutamate Oxaloacetate Transaminase (SGOT) 70

2.2.5 Estimation of Serum Glutamate Pyruvate Transaminase (SGPT) 72

2.2.6 Estimation of Serum Alkaline Phosphatase (SALKP) 74

2.2.7 Estimation of Total Bilirubin 75

2.2.8 Herbal formulation studies 79

2.2.9 Preparation of Tablets (TFI-TFVI) 79

2.2.10 Determination of Micromeritic properties 80

2.2.11 Results and Discussion 81

2.2.12 Conclusions 93

2.2.13 References 94

2.3. Antidiabetic activity of *Abutilon indicum, Hygrophila spinosa and Smilax china*

2.3.1 Introduction 97

2.3.2 Animal models for Experimental diabetic mellitus 103

2.3.3 Examples of traditional plant treatment for Diabetes mellitus 108

2.3.4 Plant material 110

2.3.5 Preparation of alcoholic extracts 110

2.3.6 Chemicals used 110

2.3.7 Selection of animals 110

2.3.8 Collection of blood samples Induction of diabetes and experimental design 111

2.3.9 Induction of diabetics and and experimental design 112

2.3.10 Herbal formulation studies 112

2.3.11 Preparation of Tablets (TFI-TFVI) 113

2.3.12 Determination of Micromeritic properties 113

2.3.13 Results and Discussion 118

2.3.14 References 157

2.4 Antimicrobial activity of *Abutilon indicum, Hygrophila spinosa and Smilax china*

2.4.1 Introduction 162

2.4.2 Methods for evaluating antimicrobial activity 163

2.4.3 Test organisms 164

2.4.4 Standardization of microorganism 165

2.4.5. Preparation of standard and test solution 165

2.4.6 Culture media 166

2.4.7 Evaluation of antibacterial and antifungal activity 167

2.4.8 Results and discussion 173

2.4.9 References 174
Chapter-3: PHYTOCHEMICAL STUDIES

3.1 Introduction 176
3.2 Preparation of extracts 177
3.3 Qualitative phytochemical screening 181
3.4 Thin layer chromatography 186
3.5 Chromatography of Chloroform extract of *Abutilon indicum* roots 192
3.6 Chromatography of methanolic extract of *Abutilon indicum* roots 198
3.7 Chromatography of combined chloroform extracts of *Hygrophila spinosa* roots 201
3.8 References 206

Chapter-4: SUMMARY 208