<table>
<thead>
<tr>
<th>TABLE No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Parameters used in PSO method</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(3, 6 and CCCP unit systems)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Optimal scheduling of generators neglecting losses</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>(3-unit system)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Solution of different methods neglecting losses</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>(3-unit system)</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Optimal scheduling of generators including losses</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>(3-unit system)</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Solution of different methods including losses</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>(3-unit system)</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Optimal scheduling of generators including CCCP</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>(3-unit system)</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Solution of different methods including CCCP</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>(3-unit system)</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Optimal scheduling of generators</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>(6-unit system)</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Solution of different methods</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(6-unit system)</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Parameters used in PSO method</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>ELD results obtained by various methods</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Minimum power dispatch results by various methods</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Line flows with line flow constraints</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>CEED results</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>TABLE No.</td>
<td>TITLE</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>2.15.</td>
<td>Parameters used in GA-PSO method (6-unit, 15-unit and 40-unit systems)</td>
<td>54</td>
</tr>
<tr>
<td>2.16.</td>
<td>Optimal generator dispatch solution by various methods (6-unit system)</td>
<td>55</td>
</tr>
<tr>
<td>2.17.</td>
<td>Comparison of solution quality (6-unit system)</td>
<td>55</td>
</tr>
<tr>
<td>2.18.</td>
<td>Optimal generator dispatch solution by various methods (15-unit system)</td>
<td>56</td>
</tr>
<tr>
<td>2.19.</td>
<td>Comparison of solution quality (15-unit system)</td>
<td>57</td>
</tr>
<tr>
<td>2.20.</td>
<td>Test results of the proposed approach (40-unit system)</td>
<td>58</td>
</tr>
<tr>
<td>2.21.</td>
<td>Comparison of solution quality (40-unit system)</td>
<td>58</td>
</tr>
<tr>
<td>3.1.</td>
<td>Parameters used in GA-PSO method (10-unit system)</td>
<td>70</td>
</tr>
<tr>
<td>3.2.</td>
<td>Cost coefficients (10-unit system)</td>
<td>71</td>
</tr>
<tr>
<td>3.3.</td>
<td>Daily generation (10-unit system)</td>
<td>71</td>
</tr>
<tr>
<td>3.4.</td>
<td>UC schedule obtained using initial population (10-unit system)</td>
<td>72</td>
</tr>
<tr>
<td>3.5.</td>
<td>Simulation results of initial population (10-unit system)</td>
<td>73</td>
</tr>
<tr>
<td>3.6.</td>
<td>UC schedule obtained using final population (10-unit system)</td>
<td>74</td>
</tr>
<tr>
<td>3.7.</td>
<td>Simulation results of final population (10-unit system)</td>
<td>75</td>
</tr>
<tr>
<td>3.8.</td>
<td>Comparison of solution quality</td>
<td>76</td>
</tr>
<tr>
<td>4.1.</td>
<td>Parameters used in PSO method (Standard-5, IEEE-14, -30, -57, -118, Indian utility -23 and -17 bus systems)</td>
<td>83</td>
</tr>
<tr>
<td>TABLE No.</td>
<td>TITLE</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>4.2.</td>
<td>Comparison of real power losses with different methods</td>
<td>85</td>
</tr>
<tr>
<td>4.3.</td>
<td>Optimal control variables</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>(IEEE-14 bus system)</td>
<td></td>
</tr>
<tr>
<td>4.4.</td>
<td>Optimal control variables</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 and -57 bus systems)</td>
<td></td>
</tr>
<tr>
<td>4.5.</td>
<td>Optimal control variables</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>(IU-NTPS-23 bus system)</td>
<td></td>
</tr>
<tr>
<td>4.6.</td>
<td>Solution of stability assessment using line voltage stability index</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>(IEEE-14 bus and IU-NTPS-23 bus systems)</td>
<td></td>
</tr>
<tr>
<td>5.1.</td>
<td>Parameters used in PSO method</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>5.2.</td>
<td>Voltage profile improvement results for a DG rating 0.2 p.u.</td>
<td>99</td>
</tr>
<tr>
<td>5.3.</td>
<td>Voltage profile improvement results for a DG rating 0.3 p.u.</td>
<td>99</td>
</tr>
<tr>
<td>5.4.</td>
<td>Line loss reduction results for a DG rating 0.2 p.u.</td>
<td>100</td>
</tr>
<tr>
<td>5.5.</td>
<td>Line loss reduction results for a DG rating 0.3 p.u.</td>
<td>101</td>
</tr>
<tr>
<td>5.6.</td>
<td>Comparison of the conventional Newton–Raphson and Proposed method in computing line voltage stability index</td>
<td>102</td>
</tr>
<tr>
<td>5.7.</td>
<td>Detection of critical lines using different methods</td>
<td>102</td>
</tr>
<tr>
<td>5.8.</td>
<td>Solution of improvement in system loadability</td>
<td>103</td>
</tr>
<tr>
<td>6.1.</td>
<td>Parameters used in PSO method</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>(single phase sag)</td>
<td></td>
</tr>
<tr>
<td>6.2.</td>
<td>Comparison of results with PAC and In-Phase injection scheme</td>
<td>116</td>
</tr>
<tr>
<td>A.1.</td>
<td>Line data</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>A.2.</td>
<td>Bus data and load flow results</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>A.3.</td>
<td>Generator cost and emission coefficients</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>(IEEE -30 bus system)</td>
<td></td>
</tr>
<tr>
<td>A.4.</td>
<td>Transformer tap setting data</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>A.5.</td>
<td>Shunt capacitor data</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>TABLE No.</td>
<td>TITLE</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>A.6.</td>
<td>Generalized loss coefficients</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>(IEEE-30 bus system)</td>
<td></td>
</tr>
<tr>
<td>B.1.</td>
<td>Generating unit capacity and coefficients</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>(6-unit system)</td>
<td></td>
</tr>
<tr>
<td>B.2.</td>
<td>Ramp rate limits and prohibited operating zones</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>(6-unit system)</td>
<td></td>
</tr>
<tr>
<td>B.3.</td>
<td>Generalized loss coefficients</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>(6-unit system)</td>
<td></td>
</tr>
<tr>
<td>C.1.</td>
<td>Generating unit coefficients with ramp rate limits</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>(15-unit system)</td>
<td></td>
</tr>
<tr>
<td>C.2.</td>
<td>Prohibited operating zones of generating units</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>(15-unit system)</td>
<td></td>
</tr>
<tr>
<td>C.3.</td>
<td>Generalized loss coefficients</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>(15-unit system)</td>
<td></td>
</tr>
<tr>
<td>D.1.</td>
<td>Generating unit coefficients with ramp rate limits</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>(40-unit system)</td>
<td></td>
</tr>
<tr>
<td>F.1.</td>
<td>Line data</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>(Standrad-5 bus system)</td>
<td></td>
</tr>
<tr>
<td>F.2.</td>
<td>Bus data</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>(Standrad-5 bus system)</td>
<td></td>
</tr>
<tr>
<td>G.1.</td>
<td>Line data</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>(IEEE-14 bus system)</td>
<td></td>
</tr>
<tr>
<td>G.2.</td>
<td>Bus data and load flow results</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>(IEEE-14 bus system)</td>
<td></td>
</tr>
<tr>
<td>G.3.</td>
<td>Transformer tap setting data</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>(IEEE-14 bus system)</td>
<td></td>
</tr>
<tr>
<td>G.4.</td>
<td>Shunt capacitor data</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>(IEEE-14 bus system)</td>
<td></td>
</tr>
<tr>
<td>H.1.</td>
<td>Line data</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>(IEEE-57 bus system)</td>
<td></td>
</tr>
<tr>
<td>H.2.</td>
<td>Bus data and load flow results</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>(IEEE-57 bus system)</td>
<td></td>
</tr>
<tr>
<td>TABLE No.</td>
<td>TITLE</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>H.3.</td>
<td>Transformer tap setting data (IEEE-57 bus system)</td>
<td>152</td>
</tr>
<tr>
<td>H.4.</td>
<td>Shunt capacitor data (IEEE-57 bus system)</td>
<td>152</td>
</tr>
<tr>
<td>I.1.</td>
<td>Sites and location of different buses (IU-NTPS-23 bus system)</td>
<td>154</td>
</tr>
<tr>
<td>I.2.</td>
<td>Line data (IU-NTPS-23 bus system)</td>
<td>155</td>
</tr>
<tr>
<td>I.3.</td>
<td>Bus data (IU-NTPS-23 bus system)</td>
<td>156</td>
</tr>
<tr>
<td>J.1.</td>
<td>Line data (IU-Puducherry-17 bus system)</td>
<td>157</td>
</tr>
<tr>
<td>J.2</td>
<td>Bus data (IU-Puducherry-17 bus system)</td>
<td>158</td>
</tr>
</tbody>
</table>