Chapter 4

Coset Cayley Digraph Structures

This chapter deals with a class of Cayley digraph structures induced by groups, whose vertices are cosets. By taking \(G/H\), the collection of all left cosets of \(H\) in \(G\) and defining relations \(E_1 \ E_2 \ldots \ E_n\) suitably we prove that the Cayley digraph structure \((G/H; E_1, E_2, \ldots, E_n)\) is vertex transitive. We include various graph properties in terms of algebraic properties. Moreover we prove that every Cayley digraph structure \((V; W_1, W_2, \ldots, W_n)\) is isomorphic to \((G/H; E_1, E_2, \ldots, E_n)\).

4.1 Definitions

Definition 4.1.1. Let \(G\) be a group and \(S_1, S_2, \ldots, S_n\) be mutually disjoint subsets of \(G\) and \(H\) be a subgroup of \(G\). Then coset Cayley digraph structure of \(G\) with respect to \(S_1, S_2, \ldots, S_n\) is defined as the digraph structure \((G/H; E_1, E_2, \ldots, E_n)\), where

\[
E_i = \{(xH, yH) : x^{-1}y \in HS_iH\}.
\]

The sets \(S_1, S_2, \ldots, S_n\) are called connection sets of \((G/H; E_1, E_2, \ldots, E_n)\).

We denote the coset Cayley digraph structure \(\text{Cay}(G/H; HS_1H, HS_2H, \ldots, HS_nH)\) induced by the group \(G\) by \(\mathcal{C}\).

Here we may use the following notations.
Let Cay\((G/H; HS_1 H, HS_2 H, \ldots, HS_n H)\) be a coset Cayley digraph structure induced by the group \(G\).

(1) Let \(A_k\) be the union of set of all \(k\) products of the form \((HS_i H)(HS_j H)\cdots(HS_k H)\). Then \(\bigcup_k A_k\) is denoted by \([HSH]\).

(2) Let \(A_k^{-1}\) be the union of set of all \(k\) products of the form:

\((HS_{i_1}^{-1} H)(HS_{i_2}^{-1} H)\cdots(HS_{i_k}^{-1} H)\).

Then \(\bigcup_k A_k^{-1}\) is denoted by \([HS^{-1} H]\).

4.1.1 Main theorems

Theorem 4.1.2. If \(G\) is a group and let \(S_1, S_2, \ldots, S_n\) are mutually disjoint subsets of \(G\) and \(H\) is a subgroup of \(G\), then the coset Cayley digraph structure \(\mathcal{C}\) is vertex transitive.

Proof. To see that Cay\((G/H; HS_1 H, HS_2 H, \ldots, HS_n H)\) is a vertex transitive digraph structure, we first need only show that \(E_i\)'s are well defined. Let \(x, y, x', y'\) be any four elements of \(G\) with \(xH = x'H\) and \(yH = y'H\). Then \(x = x'h_1\) and \(y = y'h_2\) for some \(h_1, h_2 \in H\). Observe that

\[
(xH, yH) \in E_i \Leftrightarrow x^{-1}y \in HS_i H \\
\Leftrightarrow (x'h_1)^{-1}(y'h_2) \in HS_i H \\
\Leftrightarrow h_1^{-1}(x')^{-1}y' \in HS_i H \\
\Leftrightarrow (x')^{-1}y' \in HS_i H \\
\Leftrightarrow (x'H, y'H) \in HS_i H.
\]

Hence each \(E_i\)'s are well defined and hence \(\mathcal{C}\) is a digraph structure. Let \(aH\) and \(bH\) be any two arbitrary elements in \(G/H\). Define a mapping \(\varphi : G \rightarrow G\) by

\[
\varphi(xH) = ba^{-1}xH \text{ for all } xH \in G/H.
\]

This mapping defines a permutation of the vertices of \(\mathcal{C}\). It is also an auto-
morphism. Note that
\[(xH, yH) \in E_i \iff x^{-1}y \in HS_iH \]
\[\iff (ba^{-1}x)^{-1}(ba^{-1}y) \in HS_iH \]
\[\iff (ba^{-1}x, ba^{-1}y) \in E_i \]
\[\iff (\varphi(xH), \varphi(yH)) \in E_i.\]

Also we note that
\[\varphi(aH) = ba^{-1}aH = bH.\]

Hence \(\mathcal{C}\) is vertex transitive digraph structure. \(\square\)

Theorem 4.1.3. Let \((V; W_1, W_2, \cdots, W_n)\) be any vertex transitive digraph structure such that \(|V| \geq n\). Then the Cayley digraph structure \((V; W_1, W_2, \cdots, W_n)\) is isomorphic to \(\text{Cay}(G/H; HS_1H, HS_2H, \ldots, HS_nH)\).

Proof. Let \(G\) be the automorphism group of the digraph structure \((V; W_1, W_2, \cdots, W_n)\). Let \(q_1, q_2, \cdots, q_n\) be fixed elements in \(V\). For \(i = 1, 2, \ldots, n\), define the following:

\[H_i := \{\theta \in G : \theta(q_i) = q_i\},\]
\[S_i := \{\theta \in G : (q_i, \theta(q_i)) \in W_i\}.\]

Note that \(H = \cap_{i=1}^n H_i\) is a subgroup of \(G\). Construct the Cayley digraph structure \(\text{Cay}(G/H; HS_1H, HS_2H, \ldots, HS_nH)\) as in theorem 2.2.1.

Define a map \(\varphi : G/H \longrightarrow V\) by
\[(xH)\varphi = x(q_i)\text{ for all } xH \in G/H.\]

where \(q_i\) is a fixed element in the set \(\{q_1, q_2, \ldots, q_n\}\).

(i) \(\varphi\) is well defined:
Let \(xH = yH\). Then \(y = xh_1\), for some \(h_1 \in H\). Observe that
\[\varphi(yH) = y(q_i)\]
\[= (xh_1)(q_i)\]
\[
= x[h_1(q_i)] \\
= x(q_i) \\
= \varphi(xH).
\]

(ii) \(\varphi \) is one to one:

\[
\varphi(xH) = \varphi(yH) \iff x(q_i) = y(q_i) \\
\iff y^{-1}x(q_i) = q_i \\
\iff y^{-1}x \in H \\
\iff xH = yH.
\]

(iii) \(\varphi \) is onto:
Let \(v \) be any element in \(V \). Since \((V; W_1, W_2, \cdots, W_n)\) is vertex transitive, there exists an automorphism \(\theta \) such that \(\theta(v) = q_i \). This implies that \(v = \theta^{-1}(q_i) \). That is, \(v = \varphi(\theta^{-1}H) \).

(iv) \(\varphi \) preserves adjacency relation:

Observe that

\[
(xH, yH) \in E_i \iff x^{-1}y \in HS_iH \\
\iff x^{-1}y = h_1s_ih_2 \\
\iff h_1^{-1}x^{-1}y^{-1}h_2^{-1} = s_i \in S_i \\
\iff (q_i, (h_1^{-1}x^{-1}y^{-1}h_2^{-1})(q_i)) \in W_i \\
\iff (h_1(q_i), x^{-1}y(q_i)) \in W_i \\
\iff (x(q_i), y(q_i)) \in W_i \\
\iff (\varphi(xH), \varphi(yH)) \in W_i.
\]

This completes the proof.

\[\square\]

4.1.2 Corollaries

Corollary 4.1.4. The coset Cayley graph structure \(\mathcal{C} \) is an \(E_1E_2\cdots E_n \) -trivial digraph structure \(\iff S_i = \emptyset \) for all \(i \).

Proof. By definition, \(\mathcal{C} \) is \(E_1E_2\cdots E_n \)-trivial \(\iff E_i = \emptyset \) for all \(i \). This implies
that $S_i = \emptyset$ for all i. \hfill \square

Corollary 4.1.5. The coset Cayley graph structure \mathcal{C} is an E_i-trivial digraph structure $\iff S_i = \emptyset$.

Corollary 4.1.6. The coset Cayley graph structure \mathcal{C} is $E_1 E_2 \cdots E_n$-reflexive $\iff 1 \in S_i$ for some i.

Proof. Assume that \mathcal{C} is an $E_1 E_2 \cdots E_n$-reflexive digraph structure. Then for every $xH \in G/H$, $(xH, xH) \in E_i$ for some i. This implies that $1 \in HS_i H$ for some i. Conversely, assume that $1 \in S_i$ for some i. This implies for each $xH \in G/H$, $(xH, xH) \in E_i$ for some i. That is, $(xH, xH) \in \cup E_i$ for all $x \in G$. \hfill \square

Corollary 4.1.7. The coset Cayley graph structure \mathcal{C} is E_i-reflexive $\iff 1 \in HS_i H$.

Corollary 4.1.8. The coset Cayley graph structure \mathcal{C} is $E_1 E_2 \cdots E_n$-symmetric if and only if $HS_i H = HS_i^{-1} H$ for all i.

Proof. First, assume that \mathcal{C} is an $E_1 E_2 \cdots E_n$-symmetric digraph structure. Let $a \in HS_i H$. Then $(H, aH) \in E_i$. Since \mathcal{C} is symmetric $(a, 1) \in E_i$. This implies that $a^{-1} \in HS_i H$. That is $a \in HS_i^{-1} H$. Hence $HS_i H \subseteq HS_i^{-1} H$. Similarly, we can prove that $HS_i^{-1} H \subseteq HS_i H$.

Conversely, if $HS_i H = HS_i^{-1} H$, we can prove that \mathcal{C} is an $E_1 E_2 \cdots E_n$-symmetric digraph structure. \hfill \square

Corollary 4.1.9. \mathcal{C} is E_i-symmetric if and only if $HS_i H = HS_i^{-1} H$.

Corollary 4.1.10. \mathcal{C} is an $E_1 E_2 \cdots E_n$-transitive if and only if for every i, j, $HS_i HS_j H \subseteq HS_k H$ for some k.

Proof. First, assume that \mathcal{C} is an $E_1 E_2 \cdots E_n$-transitive. We will show that for all (i, j), $HS_i HS_j H \subseteq HS_k H$ for some k. Let $x \in HS_i HS_j H = HS_i H HS_j H$. Then

$$x = z_1 z_2 \text{ for some } z_1 \in HS_i H, z_2 \in HS_j H.$$

This implies that $(H, z_1 H) \in E_i$ and $(z_1 H, z_1 z_2 H) \in E_j$. Since \mathcal{C} is $E_1 E_2 \cdots E_n$-transitive, $(H, z_1 z_2 H) \in HS_k H$ for some k. That is $z_1 z_2 \in HS_k H$. Hence $HS_i HS_j H \subseteq HS_k H$.

62
Conversely, assume that all \((i, j), HS_iHS_jH \subseteq HS_kH\) for some \(k\). We will show that \(C\) is \(E_1E_2\cdots E_n\)-transitive. Let \((H, xH) \in E_i, (xH, yH) \in E_j\). Then \(x \in HS_iH\) and \(x^{-1}y \in HS_jH\). This implies that \(y = xx^{-1}y \in HS_iHS_jH\). Since \(HS_iHS_jH \subseteq HS_kH\), we have \(y \in HS_kH\). It follows that \((H, yH) \in E_k\).

\[\square\]

Corollary 4.1.11. \(C\) is \(E_1E_2\cdots E_n\)-complete if and only if \(G = \cup HS_iH\).

Proof. Suppose \(C\) is \(E_1E_2\cdots E_n\)-complete. Then for every \(xH \in G/H\), we have \((H, xH) \in \cup E_i\). This implies that \(x \in HS_iH\) for some \(i\). This implies that \(G = \cup HS_iH\). Conversely, assume that \(G = \cup HS_iH\). Let \(xH\) and \(yH\) be two arbitrary elements in \(G/H\) such that \(y = xz\). Then \(z \in G\). This implies that \(z \in HS_iH\) for some \(i\). That is, \((H, zH) \in \cup E_i\). That is \((xH, xzH) = (xH, yH) \in \cup E_i\). This shows that \(C\) is complete.

\[\square\]

Corollary 4.1.12. \(C\) is \(E_i\)-complete if and only if \(G = HS_iH\).

Corollary 4.1.13. \(C\) is \(E_1E_2\cdots E_n\)-connected if and only if \(G = [HSH]\).

Proof. Suppose \(C\) is \(E_1E_2\cdots E_n\)-connected and let \(xH \in G/H\). Let

\[(H, y_1H, y_2H, \ldots, y_nH, xH)\]

be a \(E_1E_2\cdots E_n\)-path leading from \(H\) to \(xH\). Then we have,

- \(y_1 \in HS_{i_1}H\) for some \(i_1\)
- \(y_1^{-1}y_2 \in HS_{i_2}H\) for some \(i_2\)
- \(y_2^{-1}y_3 \in HS_{i_3}H\) for some \(i_3\)
- \(\vdots\)
- \(y_n^{-1}x \in HS_{i_{n+1}}H\) for some \(i_{n+1}\).

The above equation tells us that

\[x = y_1y_1^{-1}y_2y_2^{-1}y_3 \cdots y_n^{-1}x \in (HS_{i_1}H)(HS_{i_2}H)(HS_{i_3}H)\cdots(HS_{i_n}H) \subseteq [HSH].\]

Since \(x\) is arbitrary, \(G = [HSH]\).
Conversely, assume that \(G = [HSH] \). Let \(x \) and \(y \) be any arbitrary elements in \(G \). Let \(y = xz \). Then \(z \in G \). That is; \(z \in (HS_iH)(HS_jH) \cdots (HS_kH) \) for some \(i, j, \ldots \) and \(k \). This implies that \(z = s_is_j \ldots s_k \) for some \(i, j, \ldots \) and \(k \). Then clearly, \((H, s_is_js_H, \ldots, s_is_j \ldots s_kH)\) is an \(E_1E_2\cdots E_n \)-path from \(H \) to \(zH \). That is

\[
(xH, xs_is_jH, \ldots, xs_is_j \ldots s_kH)
\]
is a \(E_1E_2\cdots E_n \)-path from \(xH \) to \(yH \). Hence \(\mathcal{C} \) is connected. \(\square \)

Corollary 4.1.14. \(\mathcal{C} \) is \(E_i \)-connected if and only if \(G = < HS_iH > \), where \(< HS_iH >\) is the semigroup generated by \(HS_iH \).

Corollary 4.1.15. \(\mathcal{C} \) is \(E_1E_2\cdots E_n \)-quasi connected if and only if \(G = [HS^{-1}H][HSH] \).

Proof. First, assume that \(\mathcal{C} \) is quasi strongly connected. Let \(xH \) be any arbitrary element in \(G/H \). Then there exists a vertex \(yH \in G \) such that there is a path from \(yH \) to \(H \), say:

\[
(yH, y_1H, y_2H, \ldots, y_nH, H)
\]
and a path from \(yH \) to \(xH \), say:

\[
(yH, x_1H, x_2H, \ldots, x_mH, xH).
\]

Then we have the following system of equations:

\[
\begin{align*}
y^{-1}y_1 & \in HS_{i_1}H \\
y_1^{-1}y_2 & \in HS_{i_2}H \\
y_2^{-1}y_3 & \in HS_{i_3}H \\
& \quad \vdots \\
y_n^{-1} & \in HS_{i_{n+1}}H.
\end{align*}
\]
and

\[y^{-1}x_1 \in HS_{i_1}H \]
\[x_1^{-1}x_2 \in HS_{i_2}H \]
\[x_2^{-1}x_3 \in HS_{i_3}H \]
\[\vdots \]
\[x_m^{-1}x \in HS_{m+1}H. \]

(4.2)

From equation (5.1) we obtain the following:

\[y^{-1} = (y^{-1}y_1)(y_1^{-1}y_2)(y_2^{-1}y_3) \cdots (y_n^{-1}) \in S_{i_2} \in (HS_{i_1}H)(HS_{i_2}H) \cdots (HS_{i_{n+1}}H). \]

This implies that

\[y \in (HS_{i_1}^{-1}H)(HS_{i_2}^{-1}H) \cdots (HS_{i_{n+1}}^{-1}H) \in [HS^{-1}H]. \]

(4.3)

Similarly, from equation (5.2) we obtain the following:

\[y^{-1}x = (y^{-1}x_1)(x_1^{-1}x_2) \cdots (x_m^{-1}x) \in (HS_{i_1}H)(HS_{i_2}H) \cdots (HS_{i_{m+1}}H). \]

(4.4)

That is

\[y^{-1}x \in [HSH]. \]

That is

\[x \in y[HSH] \subseteq [HS^{-1}H][HSH]. \]

Since \(x \) is arbitrary, we have

\[G = [HS^{-1}H][HSH]. \]

Conversely, assume that \(G = [HS^{-1}H][HSH] \). Let \(x \) and \(y \) be two arbitrary vertices in \(G \). Let \(y = xz \). Then \(z \in G \). This implies that \(z \in [HS^{-1}H][HSH] \). Then there exists \(z_1 \in [HS^{-1}H] \) and \(z_2 \in [HSH] \) such that \(z = z_1z_2 \). \(z_1 \in [HS^{-1}H] \) implies that there exists \(t_k \in S_{i_k} \) such that

\[z_1 = t_1t_2 \cdots t_n \text{ for some } t_k \in S_{i_k}^{-1}, k = 1, 2, \ldots, n. \]
This implies that
\[(z_1H, t_1t_2H \ldots t_{n-1}, \ldots, H)\]
is a path from \(z_1H\) to \(H\). That is
\[(yz_1H, yt_1t_2H \ldots t_{n-1}H, \ldots, yH)\]
is a path from \(yz_1H\) to \(yH\).
Similarly, \(z_2 \in [HS]\) implies that there exists \(a_k \in S_{ik}\) such that
\[z_2 = a_1a_2 \ldots a_m.\]
Observe that
\[(z_2H, a_1a_2H, a_1a_2a_3H, \ldots, H)\]
is a path from \(z_2H\) to \(H\). That is,
\[(z_1z_2H, z_1a_1a_2H, a_1a_2a_3H, \ldots, z_1H)\]
is a path from \(zH\) to \(z_1H\). That is
\[(yzH, yz_1a_1a_2H, ya_1a_2a_3H, \ldots, z_1H)\]
is a path from \(xH\) to \(z_1H\).

\[\square\]

Corollary 4.1.16. \(C\) is \(E_i\)-quasi connected if and only if \(G = \langle HS_i^{-1}H \rangle < HS_iH \rangle\).

Corollary 4.1.17. \(C\) is \(E_1E_2 \cdots E_n\)-locally connected if and only if \([HSH] = [HS^{-1}H]\).

Proof. Assume that \(C\) is \(E_1E_2 \cdots E_n\)-locally connected. Let \(x \in [S]\). Then \(x \in A_m\) for some \(m\). Then \(x = s_is_j \ldots s_m\). Let \(x_0 = 1, x_1 = s_i, x_2 = s_is_j, \ldots, x_m = s_is_j \ldots s_m\). Then
\[(x_0H, x_1H, x_2H, \ldots, x_mH)\]
is a path leading from 1 to \(x\). Since \(C\) is locally connected, there exists a path from \(x\) to 1, say:
\[(xH, y_1H, y_2H, \ldots, y_mH, H)\]
This implies that

\[x^{-1}y_1 \in S_{i_1}, \]
\[y_1^{-1}y_2 \in S_{i_2}, \]
\[\vdots \]
\[y_m^{-1} \in S_{i_m}. \]

The above equations tells us that \(x^{-1} \in [HS] \). That is \(x \in [HS^{-1}H] \). Hence \([HS] \subseteq [HS^{-1}H] \). Similarly one can prove that \([HS] \supseteq [HS^{-1}H]\). This implies \([HS] = [HS^{-1}H]\). Conversely, if \([HS] = [HS^{-1}H]\), one can easily verify that \(C \) is \(E_1 E_2 \cdots E_n \) -locally connected.

Corollary 4.1.18. \(C \) is \(E_i \) -locally connected if and only if \(<HS_i^{-1}H> =<HS_iH> \).

Corollary 4.1.19. \(C \) is \(E_1 E_2 \cdots E_n \) -semi connected if and only if \(G = [HS] \cup [HS^{-1}H] \).

Proof. Assume that \(C \) is \(E_1 E_2 \cdots E_n \) -semi connected and let \(xH \in G/H \). Then there is a path from \(H \) to \(xH \), say

\[(H, x_1 H, x_2 H, \cdots, x_n H, xH) \]

or a path from \(xH \) to \(H \), say

\[(xH, y_1 H, y_2 H, \cdots, y_m H, H) \]

This implies that \(x \in [HS] \) or \(x \in [HS^{-1}H] \). This implies that \(G = [HS] \cup [HS^{-1}H] \). Similarly, if \(G = [HS] \cup [H^{-1}H] \), then one can prove that \(C \) is \(E_1 E_2 \cdots E_n \) -semi connected.

Corollary 4.1.20. \(C \) is \(E_i \) -semi connected if and only if \(G =<HS_iH> \cup <HS_i^{-1}H> \).

Corollary 4.1.21. \(C \) is an \(E_1 E_2 \cdots E_n \) -quasi ordered set if and only if

(i)\(1 \in (HS_1 H) \cup (HS_2 H) \cdots \cup (HS_n H),\)

(ii)for every \((i, j), (HS_i H)(HS_j H) \subseteq (HS_k H), \) for some \(k.\)
Corollary 4.1.22. \(C \) is an \(E_i \)-quasi ordered set if and only if

(i) \(1 \in HS_i H \),

(ii) \(HS_i^2 H \subseteq HS_i H \).

Corollary 4.1.23. \(C \) if an \(E_1 E_2 \cdots E_n \)-partially ordered set if and only if

(i) \(1 \in (HS_1 H) \cup (HS_2 H) \cdots \cup (HS_n H) \),

(ii) for every \((i, j) \), \((HS_i H)(HS_j H) \subseteq (HS_k H) \) for some \(k \)

(iii) \(\cup (HS_i H) \cap (HS_i^{-1} H) = \{1\} \).

Proof. Observe that

\[x \in \cup (HS_i H) \cap H(S_i)^{-1} H \iff x \in (HS_i H) \cap (H(S_i)^{-1} H) \text{ for some } i \]

\[\iff x \in HS_i H \text{ and } x \in H(S_i)^{-1} H \]

\[\iff (H, xH) \in E_i \text{ and } (xH, H) \in E_i \]

\[\iff x = 1. \]

This completes the proof.

Corollary 4.1.24. \(C \) if an \(E_i \)-partially ordered set if and only if

(i) \(1 \in HS_i H \),

(ii) \((HS_i H)^2 \subseteq HS_i H \)

(iii) \((HS_i H) \cap (H(S_i)^{-1} H) = \{1\} \).

Corollary 4.1.25. Let \(A_m(m \geq 2) \) is the set of \(m \) products of the form \(S_{i_1}, S_{i_2}, \ldots, S_{i_m} \). Then \(C \) is an \(E_1 E_2 \cdots E_n \)-Hasse diagram if and only if \(C \cap S_i = \emptyset \) for all \(i \) and for all \(C \in A_m \).

Proof. Suppose the condition holds. Let \(x_0 H, x_1 H, \ldots, x_m H \) be \((m + 1) \) elements in \(G/H \) such that \((x_i H, x_{i+1} H) \in \cup E_i \) for \(i = 0, 1, \ldots, m - 1 \). This implies that

\[x_0^{-1} x_1 \in S_{i_1} \]
\[x_1^{-1} x_2 \in S_{i_2}\]
\[x_2^{-1} x_3 \in S_{i_3}\]
\[\vdots\]
\[x_{m-1}^{-1} x_m \in S_{i_m}.
\]

The above equation tells us that \(x_0^{-1} x_m \in A_m\). Since \(C \cap S_i = \emptyset\) for all \(i\) and for all \(C \in A_m\), \((x_0, x_m) \notin E_i\).

Conversely assume that \(C\) is an \(E_1 E_2 \cdots E_n\)-Hasse diagram. We will show that \(C \cap S_i = \emptyset\) for all \(i\) and for all \(C \in A_m\). Let \(S_{i_1} S_{i_2} S_{i_3} \cdots S_{i_m}\) be any element in \(A_m\). Let \(x \in S_{i_1} S_{i_2} S_{i_3} \cdots S_{i_m}\). Then \(x = s_{i_1} s_{i_2} s_{i_3} \cdots s_{i_m}\) for some \(s_{i_k} \in S_{i_k}\). This implies that

\[(H, s_{i_1} H, s_{i_2} s_{i_3} H, \ldots, xH)\]

is a path from \(H\) to \(xH\). Since \(C\) is an \(E_1 E_2 \cdots E_n\)-Hasse diagram, \(x \notin S_i\) for any \(i\). That is, \(A_m \cap S_i = \emptyset\) for all \(i\). \(\square\)

Corollary 4.1.26. The \(E_1 E_2 \cdots E_n\)-out-degree of \(C\) is the cardinal number \(|S_1 \cup S_2 \cup \cdots \cup S_n/H|\).

Proof. Since \(C\) is vertex transitive it suffices to consider the out degree of the vertex \(1 \in G\). Observe that

\[\rho(H) = \{uH : (H, uH) \in E\}\]
\[= \{uH : u \in HS_i H, \text{ for some } i\}\]
\[= (HS_1 H) \cup (HS_2 H) \cup \cdots \cup (HS_n H)/H.\]

Hence \(|\rho(H)| = |(HS_1 H) \cup (HS_2 H) \cup \cdots \cup (HS_n H)/H|\). \(\square\)

Corollary 4.1.27. The \(E_i\)-out-degree of \(C\) is the cardinal number \(|HS_i H/H|\).

Corollary 4.1.28. The \(E_1 E_2 \cdots E_n\)-in-degree of \(C\) is the cardinal number \(|(HS_1^{-1} H) \cup (HS_2^{-1} H) \cup \cdots \cup (HS_n^{-1} H)/H|\).

Proof. Since \(C\) is vertex transitive it suffices to consider the in degree of the vertex \(H \in G/H\). Observe that

\[\sigma(H) = \{uH : (uH, H) \in E\}\]

69
\[E_i = \{ uH : (uH, H) \in E_i, \text{ for some } i \} \]
\[E_i = \{ uH : u^{-1} \in HS_i H, \text{ for some } i \} \]
\[E_i = \{ uH : u \in HS_i^{-1} H, \text{ for some } i \} \].

Hence \(|\sigma(H)| = |(HS_1^{-1} H) \cup (HS_2^{-1} H) \cup \ldots \cup (HS_n^{-1} H)/H| \). \[\square \]

Corollary 4.1.29. The \(E_i \) in-degree of \(C \) is the cardinal number \(|HS_i^{-1} H/H| \).

Corollary 4.1.30. For \(k = 1, 2, 3, \ldots \) let \(A_k \) be the set of all \(k \) products of the form \((HS_{i_1} H)(HS_{i_2} H) \cdots (HS_{i_k} H)\). If \(C \) has finite diameter, then the diameter of \(C \) is the least positive integer \(m \) such that

\[G = A_m. \]

Proof. Let \(m \) be the smallest positive integer such that \(G = A_m \). We will show that the diameter of \(C \) is \(n \). Let \(xH \) and \(yH \) be any two arbitrary elements in \(G \) such that \(y = xz \). Then \(z \in G \). This implies that \(x \in A_m \). But then \(z \) has a representation of the form \(x = s_{i_1}s_{i_2} \cdots s_{i_m} \). This implies that

\((H, s_{i_1} H, s_{i_1}s_{i_2} H, \ldots, zH)\)

is path of \(m \) edges from \(H \) to \(zH \). That is

\((xH, xs_{i_1} H, xs_{i_1}s_{i_2} H, \ldots, yH)\)

is a path of length \(m \) from \(xH \) to \(yH \). This shows that \(d(xH, yH) \leq m \). Since \(xH \) and \(yH \) are arbitrary,

\[\max_{xH,yH \in G} \{d_{1,2,\ldots,n}(xH, yH)\} \leq m. \]

Therefore the diameter of \(C \) is less than or equal to \(m \). On the other hand let the diameter of \(C \) be \(k \). Let \(x \in G \) and \(d_{1,2,\ldots,n}(H, xH) = k \). Then we have \(x \in B \) for some \(B \in A_k \). That is

\[G = A_k. \]

Now by the minimality of \(k \), we have \(m \leq k \). Hence \(k = m \). \[\square \]
Corollary 4.1.31. The vertex H is an $E_1E_2\cdots E_n$ - source of \mathcal{C} if and only if $G = [HSH]$.

Proof. First, assume that H is an $E_1E_2\cdots E_n$ -source of \mathcal{C}. Then for any vertex $xH \in G/H$, there is an $E_1E_2\cdots E_n$ -path from H to xH. This implies that $G = [S]$. Conversely, if $G = [HSH]$, one can prove that H is an $E_1E_2\cdots E_n$ -source.

Corollary 4.1.32. The vertex H is an E_i -source of \mathcal{C} if and only if $G =< HS_iH >$.

Corollary 4.1.33. The vertex 1 is an $E_1E_2\cdots E_n$ -sink of \mathcal{C} if and only if $G = [HS^{-1}H]$.

Proof. First, assume that H is an $E_1E_2\cdots E_n$ -sink of \mathcal{C}. Then for each $xH \in G/H$, there is an $E_1E_2\cdots E_n$ - path from xH to H. This implies that $x \in [HS^{-1}H]$. Hence $G = [HS^{-1}H]$. Conversely, if $G = [HS^{-1}H]$, one can easily prove that H is an $E_1E_2\cdots E_n$ -sink of \mathcal{C}.

Corollary 4.1.34. The vertex H is an E_i -sink of \mathcal{C} if and only if $G =< HS_i^{-1}H >$.

Corollary 4.1.35. The $E_1E_2\cdots E_n$ -reachable set $R_{1,2,\ldots,n}(H)$ of the vertex H is the set $[HSH]$.

Proof. By definition,

$$R(H) = \{x : \text{there exists an } E_1E_2\cdots E_n \text{-path from } H \text{ to } xH\}.$$

Observe that

$$x \in R_{1,2,\ldots,n}(H) \iff \text{there exists an } E_1E_2\cdots E_n \text{-path from } H \text{ to } xH, \text{ say } (H, x_1H, x_2H, \ldots, x_nH, xH) \iff x \in [HSH].$$

Therefore, $R_{1,2,3,\ldots,n}(H) = [HSH]$.

71
Corollary 4.1.36. The E_i -reachable set $R_i(H)$ of the vertex H is the set
$< S_i >$.

Corollary 4.1.37. The $E_1E_2\cdots E_n$ -antecedent set $Q_{1,2,\ldots,n}(1)$ of the vertex H is the set $[HS^{-1}H]$.

Proof. Observe that

$x \in Q_{1,2,\ldots,n}(H) \iff$ there exists an $E_1E_2\cdots E_n$ -path from xH to H, say

$(xH, x_1H, x_2H, \ldots, x_nH, H)$

$\iff x \in [HS^{-1}H]$.

Therefore,

$Q_{1,2,\ldots,n}(H) = [HS^{-1}H]$.

\hfill \Box

Corollary 4.1.38. The E_i -antecedent set $Q_i(H)$ of the vertex H is the set $< S_i^{-1} >$.

72