Chapter 3

Cayley digraph structures induced by loops

The aim of this chapter is to generalize the results obtained in chapter 2 to a weaker algebraic structure, viz. loop. By introducing R associative subsets of a loop, we prove that a bigger class of Cayley digraph structures could be induced by loops. Moreover we discuss the relation between properties digraph structures and those of loops.

3.1 Cayley digraph structures and loops

Definition 3.1.1. Let G be a loop, and let A be a subset of G. Then A said to be a R associative (right associative) subset of G, if for every $x, y \in G$, $(xy)A = x(yA)$.

This means, if $x, y \in G$ and $a \in A$, then $(xy)a = x(ya')$ for some $a' \in A$.

Definition 3.1.2. Let G be a loop and S_1, S_2, \ldots, S_n be mutually disjoint R associative subsets of G. Then Cayley digraph structure of G with respect to S_1, S_2, \ldots, S_n is defined as the digraph structure $X = (G; E_1, E_2, \ldots, E_n)$, where

$$E_i = \{(x, y) : z \in S_i\},$$

where z denotes the solution of the equation $y = xz$.

The sets S_1, S_2, \ldots, S_n are called connection sets of X. The Cayley digraph
structure of G with respect to S_1, S_2, \ldots, S_n is denoted by $\text{Cay}(G; S_1, S_2, \ldots, S_n)$.

3.1.1 Example

Example 3.1.3. Let $G = \{1, 2, 3, 4, 5, 6\}$. Define a binary operation in G as follows:

<table>
<thead>
<tr>
<th>*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Obviously G is a loop. Let $S_1 = \{1\}, S_2 = \{2\}, S_3 = \{3\}, S_4 = \{4\}$. Then the graphical representation of $\text{Cay}(G; S_1, S_2, S_3, S_4)$ is shown in figure 3.1.

![Figure 3.1: Cay($G = \{1, 2, 3, 4, 5, 6\}; S_1 = \{1\}, S_2 = \{2\}, S_3 = \{3\}, S_4 = \{4\}$)](image)

In this chapter we may use the following notations. Let $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ be a Cayley digraph structure induced by the loop G. 44
(1) Let S_1, S_2, \ldots, S_n be subsets of a loop G, then we may define the product S_1, S_2, \ldots, S_n as follows:

$$S_1S_2 \cdots S_n = \{(s_1s_2)\ldots s_n : s_i \in S_i, i = 1, 2, \ldots, n\}$$

If $S_1 = S_2 = \cdots = S$, we denote the above product as S^n.

(2) Let A_k be the union of set of all k products of the form $S_{i_1}S_{i_2} \cdots S_{i_k}$ from the set $\{S_1, S_2, \ldots, S_n\}$. Then $\bigcup_k A_k$ is denoted by $[S]$.

(3) Let D be a subset of G. We define $(D)\ell = \{z\ell : z\ell z = 1 \text{ for some } z \in D\}$.

(4) Let A be a subset of a loop G, then the semigroup generated by A is denoted by $<A>$.

(5) Let $A = \{S_i \cup S_{i_\ell} : i = 1, 2, \ldots, n\}$ and B_k be the set of all finite products of elements from A taken k at a time. Then we define $[[S]] = \bigcup_k B_k$

3.1.2 Main theorem

Theorem 3.1.4. If G is a loop and let S_1, S_2, \ldots, S_n are mutually disjoint associative subsets of G, then the Cayley digraph structure $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is vertex transitive.

Proof. Let a and b be any two arbitrary elements in G. Define a mapping $\varphi : G \to G$ by

$$\varphi(x) = (b/a)x \text{ for all } x \in G.$$

where (b/a) denotes the solution of the equation $b = za$. This mapping defines a permutation of the vertices of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$. It is also an automorphism. Let $x, y \in G$ such that $y = xz$. Note that

$$(x, y) \in E_i \iff z \in S_i \text{ for some } i.$$

The equation $y = xz$ can be written as

$$(b/a)y = (b/a)(xz)$$

45
\[(b/a)xz' \quad \text{for some } z' \in S_i.\]

The above equation tells us that \(((b/a)x, (b/a)y) \in E_i\). That is, \((\varphi(x), \varphi(y)) \in E_i\). Similarly, we assume that \((\varphi(x), \varphi(y)) \in E_i\). Then \((b/a)y = ((b/a)x)z\) for some \(z \in S_i\). This implies that \((b/a)y = (b/a)(xz')\) for some \(z' \in S_i\). By left cancellation law, we obtain \(y = xz'\). This tells us that \((b/a)y = (b/a)(xz')\) for some \(z' \in S_i\).

By left cancellation law, we obtain \(y = xz'\). This tells us that \((x,y) \in E_i\).

Also we note that \(\varphi(a) = (b/a)a = b\). Hence Cay\((G; S_1, S_2, \ldots, S_n)\) is vertex transitive.

3.1.3 Corollaries

Corollary 3.1.5. Cay\((G; S_1, S_2, \ldots, S_n)\) is an \(E_1E_2\cdots E_n\)-trivial digraph structure \(\iff S_i = \emptyset\) for all \(i\).

Proof. By definition, Cay\((G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2\cdots E_n\)-trivial \(\iff E_i = \emptyset\) for all \(i\). This implies that \(S_i = \emptyset\) for all \(i\).

Corollary 3.1.6. Cay\((G; S_1, S_2, \ldots, S_n)\) is an \(E_i\)-trivial digraph structure \(\iff S_i = \emptyset\).

Corollary 3.1.7. Cay\((G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2\cdots E_n\)-reflexive \(\iff 1 \in S_i\) for some \(i\).

Proof. Assume that Cay\((G; S_1, S_2, \ldots, S_n)\) is an \(E_1E_2\cdots E_n\)-reflexive digraph structure. Then for every \(x \in G\), \((x, x) \in E_i\) for some \(i\). This implies that the equation \(x = xz\) has a unique solution in \(S_i\) for some \(i\). That is, \(1 \in S_i\) for some \(i\).

Conversely, assume that \(1 \in S_i\) for some \(i\). This implies for each \(x \in G\), \((x, x) \in E_i\) for some \(i\). That is, \((x, x) \in \cup E_i\) for all \(x \in G\).

Corollary 3.1.8. Cay\((G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2\cdots E_n\)-symmetric if and only if \(S_i = S_{i'}\) for all \(i\).

Proof. First, assume that Cay\((G; S_1, S_2, \ldots, S_n)\) is an \(E_1E_2\cdots E_n\)-symmetric digraph structure. Let \(a \in S_i\). Then \((1, a) \in E_i\). Since Cay\((G; S_1, S_2, \ldots, S_n)\) is symmetric \((a, 1) \in E_i\). This implies that the equation \(1 = at\) has a solution in \(S_i\). That is \(a \in S_{i'}\). Hence \(S_i \subseteq S_{i'}\). Similarly, we can prove that \(S_{i'} \subseteq S_i\).
Conversely, assume that $S_i = S_{i'}$ for all i. Suppose that $(x, y) \in E_i$. Then the equation $y = xz$ has a solution in S_i. That is $z \in S_i$. Consider the equation $x = yt$. This equation can be written as:

\[
xz = (yt)z
\]
\[
y = y(tz') \text{ for some } z' \in S_i
\]
\[
y1 = y(tz')
\]

i.e., $1 = tz'$ (by left cancellation law).

The above equation tells us that $t \in S_i$. Since $S_i = S_{i'}$, it follows that $t \in S_i$. Hence the equation $x = yt$ has a solution in S_i. That is $(y, x) \in E_i$. \hfill \square

Corollary 3.1.9. Cay($G; S_1, S_2, \ldots, S_n$) is an $E_1E_2 \cdots E_n$-transitive if and only if for every i, j, $S_iS_j \subseteq S_k$ for some k.

Proof. First, assume that Cay($G; S_1, S_2, \ldots, S_n$) is $E_1E_2 \cdots E_n$-transitive. Let $x \in S_iS_j$. Then $x = z_1z_2$ for some $z_1 \in S_i$ and $z_2 \in S_j$. This implies that $(1, z_1) \in E_i$ and $(z_1, z_1z_2) \in E_j$. Since Cay(G, S_1, S_2, \ldots, S_n) is transitive $(1, z_1z_2) \in E_k$ for some k. That is $z_1z_2 \in S_k$. Hence $S_iS_j \subseteq S_k$ for some k.

Conversely assume that for each i, j, $S_iS_j \subseteq S_k$ for some k. Let x, y and $z \in G$ such that $y = xt_1$ and $z = yt_2$. If $(x, y) \in E_i$ and $(y, z) \in E_j$, then $t_1 \in S_i$ and $t_2 \in S_j$. Note that the equation $z = yt_2$ can be written as:

\[
z = (xt_1)t_2
\]
\[
= x(t_1t_2') \text{ for some } t_2' \in S_j
\]
\[
= xt_3 \text{ where } t_3 = t_1t_2'.
\]

Note that $t_3 \in S_iS_j$. Since $S_iS_j \subseteq S_k$, $t_3 \in S_k$. That the equation $z = xt$ has a solution t_3 in S_k. Hence Cay($G; S_1, S_2, \ldots, S_n$) is transitive. \hfill \square

Corollary 3.1.10. Cay($G; S_1, S_2, \ldots, S_n$) is $E_1E_2 \cdots E_n$-complete if and only if $G = \cup S_i$.

Proof. Suppose Cay($G; S_1, S_2, \ldots, S_n$) is $E_1E_2 \cdots E_n$-complete. Then for every $x \in G$, we have $(1, x) \in \cup E_i$. This implies that $x \in S_i$ for some i. This implies that $G = \cup S_i$. 47
Conversely, assume that $G = \cup S_i$. Let x and y be two arbitrary elements in G such that $y = xz$. Then $z \in G$. This implies that $z \in S_i$ for some i. That is, $(1, z) \in \cup E_i$. That is $(x, xz) = (x, y) \in \cup E_i$. This shows that $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2\cdots E_n$-complete. □

Corollary 3.1.11. $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is E_i-complete if and only if $G = S_i$.

Corollary 3.1.12. $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2\cdots E_n$-connected if and only if $G = [S]$.

Proof. Suppose $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2\cdots E_n$-connected and let $x \in G$. Let

$$(1, y_1, y_2, \ldots, y_n, x)$$

be a $E_1E_2\cdots E_n$-path leading from 1 to x. Then we have,

$$y_1 = z_1, y_2 = y_1 z_2, \ldots, y_k = y_{k-1} z_k, x = y_k z_{k+1}$$

for some $z_j \in S_{i_j}, j = 1, 2, \ldots, k + 1$. Note that the equation $x = y_k z_{k+1}$ can be written as

$$x = (y_{k-1} z_k) z_{k+1}$$

$$= ((y_{k-2} z_{k-1}) y_{k-1} z_k) z_{k+1}$$

$$= (z_1 z_2) \cdots z_{k+1}$$

The last equation tells us that $x \in S_{i_1} S_{i_2} \cdots S_{i_{k+1}}$. This implies that $x \in A$ for some $A \in [S]$. Since x is arbitrary, $G = [S]$.

Conversely, assume that $G = [S]$. Let x and y be any arbitrary elements in G. Let $y = xz$. Then $z \in G$. Then $z \in S_i S_j \cdots S_k$ for some i, j, \ldots and k. This implies that $z = s_i s_j \cdots s_k$ for some i, j, \ldots and k. Then clearly, $(1, s_i, s_is_j, \ldots, s_is_j \cdots s_k)$ is an $E_1E_2\cdots E_n$-path from 1 to z. That is

$$(x, xs_i, xs_is_j, \ldots, xs_is_j \cdots s_k)$$

is a $E_1E_2\cdots E_n$-path from x to y. Hence $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is connected. □
Corollary 3.1.13. Cay($G; S_1, S_2, \ldots, S_n$) is E_i-connected if and only if $G = \langle S_i \rangle$, where $\langle S_i \rangle$ is the semigroup generated by S_i.

Corollary 3.1.14. Cay($G; S_1, S_2, \ldots, S_n$) is $E_1E_2\cdots E_n$-quasi connected if and only if $G = [S][S]$.

Proof. First, assume that Cay($G; S_1, S_2, \ldots, S_n$) is quasi connected. Let x be any arbitrary element in G. Then there exists a vertex $y \in G$ such that there is a path from y to 1, say:

$$(y, y_1, y_2, \ldots, y_n, 1)$$

and a path from y to x, say:

$$(y, x_1, x_2, \ldots, x_m, x).$$

Then we have the following system of equations:

\begin{align*}
y_1 &= yz_1 \text{ for some } z_1 \in S_1, \\
y_2 &= y_1z_2 \text{ for some } z_2 \in S_2, \\
y_3 &= y_2z_3 \text{ for some } z_3 \in S_3, \\
& \vdots \\
1 &= y_nz_{n+1} \text{ for some } z_{n+1} \in S_{n+1} \\
\end{align*} \tag{3.1}

and

\begin{align*}
x_1 &= yt_1 \text{ for some } z_1 \in S_1, \\
x_2 &= x_1t_2 \text{ for some } z_2 \in S_2, \\
x_3 &= x_2t_3 \text{ for some } z_3 \in S_3, \\
& \vdots \\
x &= x_mt_{m+1} \text{ for some } z_{m+1} \in S_{m+1}. \\
\end{align*} \tag{3.2}

Observe that equation (5.1) can be written as:

$$1 = y(w_1w_2 \cdots w_{n+1}) \text{ for some } w_k \in S_{i_k}, k = 1, 2, \ldots, n + 1. \tag{3.3}$$
This implies that
\[y \in [S]_\ell. \] \hfill (3.4)

Similarly, equation (5.2) can be written as:
\[x = y(v_1 v_2 \ldots v_{m+1}) \text{ for some } v_k \in S_{i_k}, k = 1, 2, \ldots, m + 1. \] \hfill (3.5)

From equations (5.3) and (5.4), we have
\[x \in [S]_\ell[S]. \] \hfill (3.6)

Since \(x \) is arbitrary, \(G = [S]_\ell[S] \).

Conversely, assume that \(G = [S]_\ell[S] \). Let \(x \) and \(y \) be two arbitrary vertices in \(G \). Let \(y = xz \). Then \(z \in G \). This implies that \(z \in [S]_\ell[S] \). Then there exists \(z_1 \in [S]_\ell \) and \(z_2 \in [S] \) such that \(z = z_1 z_2 \). \(z_1 \in [S]_\ell \) implies that there exists \(t_k \in S_{i_k} \) such that
\[1 = z_1(t_1 t_2 \ldots t_m) \]
i.e., \(1 = (((z_1 r_1) r_2) \ldots r_m) \) for some \(r_k \in S_{i_k}, k = 1, 2, \ldots, m \).

This implies that
\[(z_1, z_1 r_1, z_1 r_1 r_2, \ldots, 1) \]
is a path from \(z_1 \) to 1. That is
\[(yz_1, yz_1 r_1, yz_1 r_1 r_2, \ldots, y) \]
is a path from \(yz_1 \) to \(y \).

Similarly, \(z_2 \in [S] \) implies that there exists \(a_k \in S_{i_k} \) such that
\[z_2 = a_1 a_2 \ldots a_m. \]

Observe that
\[(z_2, a_1 a_2, a_1 a_2 a_3, \ldots, 1) \]
is a path from z_2 to 1. That is,

$$ (z_1 z_2, z_1 a_1 a_2, a_1 a_2 a_3, \ldots, z_1) $$

is a path from z to yz_1. That is

$$ (yz, yz_1 a_1 a_2, ya_1 a_2 a_3, \ldots, yz_1) $$

is a path from x to yz_1. This implies that $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is $E_1 E_2 \cdots E_n$-quasi connected.

Corollary 3.1.15. $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is E_i-quasi connected if and only if $G = < S_i >_\ell < S_i >$.

Corollary 3.1.16. $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is $E_1 E_2 \cdots E_n$-locally connected if and only if $[S] = [S]_\ell$.

Proof. Assume that $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is $E_1 E_2 \cdots E_n$-locally connected. Let $x \in [S]$. Then $x \in A_m$ for some m. Then $x = s_is_j \ldots s_m$. Let $x_0 = 1, x_1 = s_i, x_2 = s_is_j, \ldots, x_m = s_is_j \ldots s_m$. Then

$$ (x_0, x_1, x_2, \ldots, x_m) $$

is a path leading from 1 to x. Since $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is locally connected, there exists a path from x to 1, say:

$$ (x, y_1, y_2, \ldots, y_m, 1). $$

This implies that

$$ y_1 = xt_1 \text{ for some } t_1 \in S_i $$

$$ y_2 = y_1 t_2 \text{ for some } t_2 \in S_{i_2} $$

$$ \vdots $$

$$ 1 = y_m t_{m+1} \text{ for some } t_{m+1} \in S_{i_n}. $$

This implies that $1 = x(z_1 z_2 \cdots z_n)$ for some $z_k \in S_{i_k}, k = 1, 2, 3, \ldots, (m + 1)$. That is $x \in [S]_\ell$. Hence $[S] \subseteq [S]_\ell$. Similarly, one can prove that $[S]_\ell \subseteq [S]$.

51
Hence $|S| = |S|_\ell$. Conversely, if $|S| = |S|_\ell$, one can easily verify that $Cay(G; S_1, S_2, \ldots, S_n)$ is E_i-locally connected.

Corollary 3.1.17. $Cay(G; S_1, S_2, \ldots, S_n)$ is E_i-locally connected if and only if $<S_i> = <S_i>_\ell$.

Corollary 3.1.18. $Cay(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2\cdots E_n$-semi connected if and only if $G = [S] \cup [S]_\ell$.

Proof. Assume that $Cay(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2\cdots E_n$-semi connected and let $x \in G$. Then there is a path from 1 to x, say

$$(1, x_1, x_2, \cdots, x_n, x)$$

or a path from x to 1, say

$$(x, y_1, y_2, \cdots, y_m, 1)$$

This implies that $x \in [S]$ or $x \in [S]_\ell$. This implies that $G = [S] \cup [S]_\ell$. Similarly, if $G = [S] \cup [S]_\ell$, then one can prove that $Cay(G; S_1, S_2, \ldots, S_n)$ is $E_1E_2\cdots E_n$-semi connected.

Corollary 3.1.19. $Cay(G; S_1, S_2, \ldots, S_n)$ is E_i-semi connected if and only if $G = <S_i> \cup <S_i>_\ell$.

Corollary 3.1.20. $Cay(G; S_1, S_2, \ldots, S_n)$ is an $E_1E_2\cdots E_n$-quasi ordered set if and only if

$$(i)1 \in S_1 \cup S_2 \cdots \cup S_n,$$

$$(ii)\text{for every } (i, j), \ S_iS_j \subseteq S_k \text{ for some } k.$$
Corollary 3.1.22. Cay\((G; S_1, S_2, \ldots, S_n)\) if an \(E_1 E_2 \cdots E_n\)-partially ordered set if and only if

\[
(i) 1 \in S_1 \cup S_2 \cdots \cup S_n,
(ii) \text{for every } (i, j), \ S_i S_j \subseteq S_k \text{ for some } k
(iii) \cup (S_i \cap S_i^{-1}) = \{1\}.
\]

Proof. Observe that

\[
x \in \cup(S_i \cap S_{i_\ell}) \iff x \in (S_i \cap S_{i_\ell}) \text{ for some } i
\]
\[
\iff x \in S_i \text{ and } x \in S_{i_\ell}
\]
\[
\iff (1, x) \in E_i \text{ and } (x, 1) \in E_i
\]
\[
\iff x = 1.
\]

From these equivalences, the result follows. \(\square\)

Corollary 3.1.23. Cay\((G; S_1, S_2, \ldots, S_n)\) if an \(E_i\)-partially ordered set if and only if

\[
(i) 1 \in S_i,
(ii) S_i \subseteq S_i
(iii) S_i \cap S_i = \{1\}.
\]

Corollary 3.1.24. Let \(A_m\) (\(m \geq 2\))is the set of \(m\) products of the form \(S_1 S_2 \cdots S_m\). Then Cay\((G; S_1, S_2, \ldots, S_n)\) is an \(E_1 E_2 \cdots E_n\)-Hasse diagram if and only if \(C \cap S_i = \emptyset\) for all \(i\) and for all \(C \in A_m\).

Proof. Suppose the condition holds. Let \(x_0, x_1, \ldots, x_m\) be \((m + 1)\) elements in \(G\) such that \((x_i, x_{i+1}) \in \cup E_i\) for \(i = 0, 1, \ldots, m - 1\). This implies that

\[
x_1 = x_0 t_1 \text{ for some } t_1 \in S_1
x_2 = x_1 t_2 \text{ for some } t_2 \in S_2
x_3 = x_2 t_3 \text{ for some } t_3 \in S_3
\]
\[
\vdots
x_m = x_{m-1} t_m \text{ for some } t_m \in S_m.
\]
The last equation can be written as:

\[x_m = ((x_{m-2}t_{m-1}))t_m = (x_0t_1t_2)\cdots t_m = x_0(z_1z_2\ldots z_m) \text{ for some } z_k \in S_{i_k}, k = 1, 2, \ldots, m = x_0t, \text{ where } t = z_1z_2\ldots z_m \in A_m. \]

Since \(C \cap S_i = \emptyset \) for all \(i \) and for all \(C \in A_m, (x_0, x_m) \notin \bigcup E_i \).

Conversely assume that \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is an \(E_1E_2\cdots E_n \)-Hasse diagram. We will show that \(C \cap S_i = \emptyset \) for all \(i \) and for all \(C \in A_m \). Let \(S_{i_1}S_{i_2}S_{i_3}\cdots S_{i_m} \) be any element in \(A_m \). Let \(x \in S_{i_1}S_{i_2}S_{i_3}\cdots S_{i_m} \). Then \(x = s_{i_1}s_{i_2}s_{i_3}\cdots s_{i_m} \) for some \(s_{i_k} \in S_{i_k} \). This implies that

\[(1, s_{i_1}, s_{i_2}s_{i_3}, \ldots, x)\]

is a path from 1 to \(x \). Since \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is an \(E_1E_2\cdots E_n \)-Hasse diagram, \(x \notin S_i \) for any \(i \). That is, \(A_m \cap S_i = \emptyset \) for all \(i \).

Corollary 3.1.25. Let \(A_m (m \geq 2) \) be the set of all \(m \) products of the form \(S_{i_1}S_{i_2}\cdots S_{i_m} \). Then \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is an \(E_i \)-Hasse diagram if and only if \(S_{i_m}^2 \cup S = \emptyset \), for all \(m \geq 2 \).

Corollary 3.1.26. The \(E_1E_2\cdots E_n \)-out-degree of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is the cardinal number \(|S_1 \cup S_2 \cup \cdots \cup S_n| \).

Proof. Since \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is vertex transitive it suffices to consider the out degree of the vertex 1 \(\in G \). Observe that

\[\rho(1) = \{u : (1, u) \in \bigcup E\} = \{u : u \in S_i \text{ for some } i\} = S_1 \cup S_2 \cup \cdots \cup S_n. \]

Hence \(|\rho(1)| = |S_1 \cup S_2 \cup \cdots \cup S_n| \).

Corollary 3.1.27. The \(E_i \)-out-degree of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is the cardinal number \(|S_i| \).
Corollary 3.1.28. The $E_1 E_2 \cdots E_n$ -in-degree of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is the cardinal number $|S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}|$.

Proof. Since $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is vertex transitive it suffices to consider the in degree of the vertex $1 \in G$. Observe that

$$
\sigma(1) = \{ u : (u, 1) \in \cup E \} = \{ u : (u, 1) \in E_i \} = \{ u : 1 = uz \text{ for some } z \in S_i \} = \{ z : z \ell \in S_{i\ell} \text{ for some } i \} = S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}.
$$

Hence $|\sigma(1)| = |S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}|$. \(\square\)

Corollary 3.1.29. The E_i -in-degree of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is the cardinal number $|S_{i\ell}|$.

Corollary 3.1.30. For $k = 1, 2, 3, \ldots$ let A_k be the set of all k products of the form $S_{i_1} S_{i_2} S_{i_3} \cdots S_{i_k}$. If $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ has finite diameter, then the diameter of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is the least positive integer m such that

$$
G = A_m.
$$

Proof. Let m be the smallest positive integer such that $G = A_m$. We will show that the diameter of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is m. Let x and y be any two arbitrary elements in G such that $y = xz$. Then $z \in G$. This implies that $x \in A$. But then z has a representation of the form $x = s_{i_1} s_{i_2} \cdots s_{i_m}$. This implies that

$$(1, s_{i_1}, s_{i_1} s_{i_2}, \ldots, z)$$

is path of m edges from 1 to z. That is

$$(x, xs_{i_1}, xs_{i_1} s_{i_2}, \ldots, y)$$

is a path of length m from x to y. This shows that $d(x, y) \leq m$. Since x and y are arbitrary,

$$
\max_{x, y \in G} \{ d_1, 2, \ldots, n(x, y) \} \leq m.
$$

55
Therefore the diameter of Cay($G; S_1, S_2, \ldots, S_n$) is less than or equal to m. On the other hand let the diameter of Cay($G; S_1, S_2, \ldots, S_n$) be k. Let $x \in G$ and $d_{1,2,\ldots,n}(1, x) = k$. Then we have $x \in B$ for some $B \in A_k$. That is

\[G = A_k. \]

Now by the minimality of k, we have $m \leq k$. Hence $k = m$. \hfill \Box

Corollary 3.1.31. If Cay($G; S_1, S_2, \ldots, S_n$) has finite, then E_i -diameter of the Cayley digraph structure Cay($G; S_1, S_2, \ldots, S_n$) is the least positive integer m such that

\[G = S_i^m. \]

Corollary 3.1.32. The vertex 1 is an $E_1E_2 \cdots E_n$ -source of Cay($G; S_1, S_2, \ldots, S_n$) if and only if $G = [S]$.

Proof. First, assume that 1 is an $E_1E_2 \cdots E_n$ -source of Cay($G; S_1, S_2, \ldots, S_n$). Then for any vertex $x \in G$, there is an $E_1E_2 \cdots E_n$ -path from 1 to x. This implies that $G = [S]$. Conversely, if $G = [S]$, one can prove that 1 is an $E_1E_2 \cdots E_n$ -source. \hfill \Box

Corollary 3.1.33. The vertex 1 is an E_i -source of Cay($G; S_1, S_2, \ldots, S_n$) if and only if $G = <S_i>$.

Corollary 3.1.34. The vertex 1 is an $E_1E_2 \cdots E_i$ -sink of Cay($G; S_1, S_2, \ldots, S_n$) if and only if $G = [S]_\ell$.

Proof. First, assume that 1 is an $E_1E_2 \cdots E_n$ -sink of Cay($G; S_1, S_2, \ldots, S_n$). Then for each $x \in G$, there is an $E_1E_2 \cdots E_n$ -path from x to 1. This implies that $x \in [S]_\ell$. Hence $G = [S]_\ell$. Conversely, if $G = [S]_\ell$, one can easily prove that 1 is an $E_1E_2 \cdots E_n$ -sink of Cay($G; S_1, S_2, \ldots, S_n$). \hfill \Box

Corollary 3.1.35. The vertex 1 is an E_i -sink of Cay($G; S_1, S_2, \ldots, S_n$) if and only if $G = <S_i>_{\ell}$.

Corollary 3.1.36. The $E_1E_2 \cdots E_n$ -reachable set $R_{1,2,\ldots,n}(1)$ of the vertex 1 is the set $[S]$.

56
Proof. By definition,

\[R(1) = \{ x : \text{there exists an } E_1E_2\cdots E_n \text{-path from 1 to } x \} \]

Observe that

\[x \in R_{1,2,\ldots,n}(1) \iff \text{there exists an } E_1E_2\cdots E_n \text{-path from 1 to } x, \text{ say} \]
\[(1, x_1, x_2, \ldots, x_n, x) \]
\[\iff x \in [S]. \]

Therefore, \(R_{1,2,3,\ldots,n}(1) = [S] \). \(\square \)

Corollary 3.1.37. The \(E_i \)-reachable set \(R_i(1) \) of the vertex 1 is the set \(<S_i>\).

Corollary 3.1.38. The \(E_1E_2\cdots E_n \)-antecedent set \(Q_{1,2,\ldots,n}(1) \) of the vertex 1 is the set \([S]_\ell\).

Proof. Observe that

\[x \in Q_{1,2,\ldots,n}(1) \iff \text{there exists an } E_1E_2\cdots E_n \text{-path from } x \text{ to 1, say} \]
\[(x, x_1, x_2, \ldots, x_n, 1) \]
\[\iff x \in [S]_\ell. \]

Therefore,

\[Q_{1,2,\ldots,n}(1) = [S]_\ell. \]

This completes the proof. \(\square \)

Corollary 3.1.39. The \(E_i \)-antecedent set \(Q_i(1) \) of the vertex 1 is the set \(<S_i>_{\ell}\).