CHAPTER 3

IDEALS IN DUO F-SEMIGROUPS
Chapter 3

IDEALS IN DUO Γ-SEMIGROUPS

KRULL [29] proved that the nil-radical of an ideal A in a commutative ring is equal to the intersection of all minimal prime ideals containing A. SATYANARAYANA [43] obtained KRULL’s theorem [29] for commutative semigroups. ANJANEYULU [4] introduced the notions of ideals in duo semigroups and exhibit some examples and some classes of duo semigroups. He obtained KRULL’s theorem [29] for pseudo symmetric semigroups which includes duo semigroups. MADHUSUDHANA RAO, ANJANEYULU and GANGADHARA RAO [32], [33], [34] and [35] introduced the notions of duo Γ-semigroups and obtained KRULL’s theorem for pseudo and semipseudo symmetric Γ-semigroups. In this thesis we introduce and made a study on ideals in duo Γ-semigroups and obtained an analogue of KRULL’s theorem [29] in duo Γ-semigroups.

This chapter is divided into 5 sections. In section 1, the terms; left duo Γ-semigroup, right duo Γ-semigroup, duo Γ-semigroup are introduced. It is proved that a Γ-semigroup S is a duo Γ-semigroup if and only if $x\Gamma s^l = s^l \Gamma x$ for all $x \in S$. Further it is proved that (1) every commutative Γ-semigroup is a duo Γ-semigroup (2) every normal Γ-semigroup is a duo Γ-semigroup (3) every quasi commutative Γ-semigroup is a duo Γ-semigroup (4) every generalized Γ-semigroup is a left duo Γ-semigroup.

In section 2, it is proved that (1) if A is a Γ-ideal in a left duo Γ-semigroup S, then $A(a) = \{ x \in S : x\Gamma a \subseteq A \}$ is a Γ-ideal of S for all $a \in S$, (2) if A is a Γ-ideal in a right duo Γ-semigroup S, then $A_r(a) = \{ x \in S : a\Gamma x \subseteq A \}$ is a Γ-ideal of S for all $a \in S$, (3) if A is a Γ-ideal in a duo Γ-semigroup S, then $A(a) = \{ x \in S : x\Gamma a \subseteq A \}$ and $A_r(a) = \{ x \in S : a\Gamma x \subseteq A \}$ are Γ-ideals of S for all $a \in S$. Further it is proved that (1) if A is a Γ-ideal in a left duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$ for all $s \in S$, (2) if A is a Γ-ideal in a right duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$ for all $s \in S$, (3) if A is a Γ-ideal in a duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$. It is proved that if A is a Γ-ideal in a duo Γ-semigroup S and $a, b \in S$, then (1) $a\Gamma b \in A$ iff $< a > \Gamma < b > \subseteq A$, (2) $a_1\Gamma a_2\Gamma \ldots a_n \Gamma a_n \subseteq A$ iff $< a_1 > \Gamma < a_2 > \ldots \Gamma < a_n > \subseteq A$, (3) for any natural number n, $(a\Gamma)^{n-l} \Gamma a \subseteq A$ iff $(< a > \Gamma)^{n-l} < a > \subseteq A$. It is also proved that in a duo Γ-semigroup S, a Γ-ideal P is prime Γ-ideal if and only if P is a completely prime Γ-ideal. Further it is proved that a
\(
\text{Structure and ideal theory of duo } \Gamma\text{-semigroups}
\)

Gamma-ideal \(A\) of a duo \(\Gamma\)-semigroup \(S\) is a completely semiprime \(\Gamma\)-ideal of \(S\) if and only if \(A\) is a semiprime \(\Gamma\)-ideal.

In section 3, it is proved that, if \(A_1 = \text{the intersection of all completely prime } \Gamma\text{-ideals of } S \text{ containing } A\), \(A_2 = \{x \in S : (x\Gamma)^{n-1}x \subseteq A \text{ for some natural number } n \}\), \(A_3 = \text{the intersection of all prime } \Gamma\text{-ideals of } S \text{ containing } A\), \(A_4 = \{x \in S : (\langle x \rangle^\Gamma)^{n-1} < x > \subseteq A \text{ for some natural number } n \}\) for a \(\Gamma\)-ideal \(A\) of a \(\Gamma\)-semigroup \(S\), then \(A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1\). If \(A\) is a \(\Gamma\)-ideal of a commutative/duo \(\Gamma\)-semigroup then it is proved that \(A_1 = A_2 = A_3 = A_4\). It is proved that if \(A\) is a \(\Gamma\)-ideal in a duo \(\Gamma\)-semigroup \(S\), then (1) \(A_2\) is the minimal completely semiprime \(\Gamma\)-ideal of \(S\) containing \(A\), (2) \(A_4\) is the minimal semiprime \(\Gamma\)-ideal of \(S\) containing \(A\). It is proved that if \(a \in \sqrt{A}\), then there exist a positive integer \(n\) such that \((a\Gamma)^{n-1}a \subseteq A\). Further if \(A\) is a \(\Gamma\)-ideal of a duo \(\Gamma\)-semigroup \(S\) then it is proved that (1) \(A_1\) = the intersection of all completely prime \(\Gamma\)-ideals of \(S\) containing \(A\), (2) \(A'_1\) = the intersection of all minimal completely prime \(\Gamma\)-ideals of \(S\) containing \(A\), (3) \(A''_1\) = the minimal completely semiprime \(\Gamma\)-ideal of \(S\) containing \(A\), (4) \(A_2\) = \(\{x \in S : (x\Gamma)^{n-1}x \subseteq A \text{ for some natural number } n \}\), (5) \(A_3\) = the intersection of all prime \(\Gamma\)-ideals of \(S\) containing \(A\), (6) \(A'_3\) = the intersection of all minimal prime \(\Gamma\)-ideals of \(S\) containing \(A\), (7) \(A''_3\) = the minimal semiprime \(\Gamma\)-ideal of \(S\) containing \(A\), (8) \(A_4\) = \(\{x \in S : (\langle x \rangle^\Gamma)^{n-1} < x > \subseteq A \text{ for some natural number } n \}\) are equal.

In section 4, the terms; Archimedean \(\Gamma\)-semigroup and strongly Archimedean \(\Gamma\)-semigroup are introduced. It is proved that if \(S\) is a duo \(\Gamma\)-semigroup, then the conditions (1) \(S\) is strongly Archimedean, (2) \(S\) is Archimedean, (3) \(S\) has no proper completely prime \(\Gamma\)-ideals and (4) \(S\) has no proper prime \(\Gamma\)-ideals; are equivalent.

In section 5, the terms; left simple \(\Gamma\)-semigroup, right simple \(\Gamma\)-semigroup, simple \(\Gamma\)-semigroup are introduced. It is proved that (1) a \(\Gamma\)-semigroup \(S\) is a left simple \(\Gamma\)-semigroup if and only if \(S\Gamma a = S\) for all \(a \in S\), (2) a \(\Gamma\)-semigroup \(S\) is a right simple \(\Gamma\)-semigroup if and only if \(a\Gamma S = S\) for all \(a \in S\), (3) a \(\Gamma\)-semigroup \(S\) is a simple \(\Gamma\)-semigroup if and only if \(S\Gamma a\Gamma S = S\) for all \(a \in S\). It is also proved that if \(S\) is a left simple \(\Gamma\)-semigroup or a right simple \(\Gamma\)-semigroup then \(S\) is a simple \(\Gamma\)-semigroup. Further it is proved that if \(S\) is a duo \(\Gamma\)-semigroup and \(a \in S\) then (1) \(a\) is regular, (2) \(a\) is
Structure and ideal theory of duo Γ-semigroups

left regular, (3) \(a \) is right regular, (4) \(a \) is intra regular and (5) \(a \) is semisimple are equivalent.

The contents of chapter 3 are published in "International eJournal of Mathematics and Engineering" under the title 'Prime Γ-ideals in duo Γ-semigroups' [17].

3.1. DUO Γ-SEMIGROUPS

Duo Γ-semigroups played an important role in the theory of Γ-semigroups. In this section the terms; left duo Γ-semigroup, right duo Γ-semigroup, duo Γ-semigroup are introduced. It is proved that a Γ-semigroup \(S \) is a duo Γ-semigroup if and only if \(x \Gamma S^1 = S^1 \Gamma x \) for all \(x \in S \). Further it is proved that (1) every commutative Γ-semigroup is a duo Γ-semigroup (2) every normal Γ-semigroup is a duo Γ-semigroup (3) every quasi commutative Γ-semigroup is a duo Γ-semigroup (4) every generalized Γ-semigroup is a left duo Γ-semigroup.

We now introduce a left duo Γ-semigroup, right duo Γ-semigroup and duo Γ-semigroup.

DEFINITION 3.1.1 : A Γ-semigroup \(S \) is said to be a **left duo Γ-semigroup** provided every left Γ-ideal of \(S \) is a two sided Γ-ideal of \(S \).

DEFINITION 3.1.2 : A Γ-semigroup \(S \) is said to be a **right duo Γ-semigroup** provided every right Γ-ideal of \(S \) is a two sided Γ-ideal of \(S \).

DEFINITION 3.1.3 : A Γ-semigroup \(S \) is said to be a **duo Γ-semigroup** provided it is both a left duo Γ-semigroup and a right duo Γ-semigroup.

THEOREM 3.1.4 : A Γ-semigroup \(S \) is a duo Γ-semigroup if and only if \(x \Gamma S^1 = S^1 \Gamma x \) for all \(x \in S \).

Proof : Suppose that \(S \) is a duo Γ-Semigroup and \(x \in S \).

Let \(t \in x \Gamma S^1 \). Then \(t = x \gamma s \) for some \(s \in S^1, \gamma \in \Gamma \).

Since \(S^1 \Gamma x \) is a left Γ-ideal of \(S \), \(S^1 \Gamma x \) is a Γ-ideal of \(S \).

So \(x \in S^1 \Gamma x, \gamma \in \Gamma, s \in S, S^1 \Gamma x \) is a Γ-ideal \(\Rightarrow x \gamma s \in S^1 \Gamma x \Rightarrow t \in S^1 \Gamma x \).

Therefore \(x \Gamma S^1 \subseteq S^1 \Gamma x \). Similarly we can prove that \(S^1 \Gamma x \subseteq x \Gamma S^1 \). Therefore \(S^1 \Gamma x = x \Gamma S^1 \).

Conversely suppose that \(S^1 \Gamma x = x \Gamma S^1 \) for all \(x \in S \). Let \(A \) be a left Γ-ideal of \(S \).

Let \(x \in A, s \in S \) and \(a \in \Gamma \). Then \(xas \in x \Gamma S^1 = S^1 \Gamma x \Rightarrow xas = t \beta x \) for some \(t \in S^1, \beta \in \Gamma \).
Structure and ideal theory of duo \(\Gamma \)-semigroups

Ideals in duo \(\Gamma \)-semigroups

\(x \in A, t \in S, \beta \in \Gamma, A \) is a left \(\Gamma \)-ideal of \(S \Rightarrow t\beta x \in A \Rightarrow x\alpha s \in A \).

Therefore \(A \) is a right \(\Gamma \)-ideal of \(S \) and hence \(A \) is a \(\Gamma \)-ideal of \(S \).

Therefore \(S \) is left duo \(\Gamma \)-semigroup.

Similarly we can prove that \(S \) is a right duo \(\Gamma \)-semigroup. Hence \(S \) is duo \(\Gamma \)-semigroup.

THEOREM 3.1.5 : Every commutative \(\Gamma \)-semigroup is a duo \(\Gamma \)-semigroup.

Proof : Suppose that \(S \) is a commutative \(\Gamma \)-semigroup. Therefore \(x\Gamma S^1 = S^1\Gamma x \) for all \(x \in S \). By theorem 3.1.4, \(S \) is a duo \(\Gamma \)-semigroup.

THEOREM 3.1.6 : Every normal \(\Gamma \)-semigroup is a duo \(\Gamma \)-semigroup.

Proof : Suppose that \(S \) is normal \(\Gamma \)-semigroup.

Then \(a\Gamma S = S\Gamma a \) for all \(a \in S \Rightarrow a\Gamma S^1 = S^1\Gamma a \) for all \(a \in S \).

By theorem 3.1.4, \(S \) is a duo \(\Gamma \)-semigroup.

THEOREM 3.1.7 : Every quasi commutative \(\Gamma \)-semigroup is a duo \(\Gamma \)-semigroup.

Proof : Suppose that \(S \) is a quasi commutative \(\Gamma \)-semigroup. Then for \(a, b \in S \), there exists \(n \in \mathbb{N} \) such that \(ayb = (by)^n a \) for all \(y \in \Gamma \). Let \(A \) be a left \(\Gamma \)-ideal of \(S \).

Therefore \(S\Gamma A \subseteq A \). Let \(a \in A \) and \(s \in S \). Since \(S \) is a quasi commutative \(\Gamma \)-semigroup, there exists a natural number \(n \) such that \(a\Gamma s = (s\Gamma)^n a \subseteq S\Gamma A \subseteq A \). Therefore \(a\Gamma s \subseteq A \) for all \(a \in A \) and \(s \in S \) and hence \(A\Gamma S \subseteq A \). Thus \(A \) is right \(\Gamma \)-ideal of \(S \).

Therefore \(S \) is a left duo \(\Gamma \)-semigroup. Similarly we can prove that \(S \) is a right duo \(\Gamma \)-semigroup. Therefore every quasi commutative \(\Gamma \)-semigroup is a duo \(\Gamma \)-semigroup.

THEOREM 3.1.8 : Every generalized commutative \(\Gamma \)-semigroup is a left duo \(\Gamma \)-semigroup.

Proof : Let \(S \) be a generalized commutative \(\Gamma \)-semigroup. Therefore \(1 \) is an \(r \)-element.

Let \(A \) be a left \(\Gamma \)-ideal of \(S \). Let \(x \in A \) and \(s \in S \).

Now \(x\Gamma s = I\Gamma x\Gamma s = b\Gamma s\Gamma x = (b\Gamma s)\Gamma x \subseteq A \). Therefore \(A \) is a \(\Gamma \)-ideal of \(S \).

Therefore \(S \) is a left duo \(\Gamma \)-semigroup.

3.2. \(\Gamma \)-IDEALS IN DUO \(\Gamma \)-SEMIGROUPS

In this section, it is proved that (1) if \(A \) is a \(\Gamma \)-ideal in a left duo \(\Gamma \)-semigroup \(S \), then \(A(a) = \{ x \in S : x\Gamma a \subseteq A \} \) is a \(\Gamma \)-ideal of \(S \) for all \(a \in S \), (2) if \(A \) is a \(\Gamma \)-ideal in a
right duo Γ-semigroup S, then $A_\Gamma(a) = \{ x \in S : a\Gamma x \subseteq A \}$ is a Γ-ideal of S for all $a \in S$.

(3) if A is a Γ-ideal in a duo Γ-semigroup S, then $A_\Gamma(a) = \{ x \in S : a\Gamma x \subseteq A \}$ and $A_\Gamma(a) = \{ x \in S : a\Gamma x \subseteq A \}$ are Γ-ideals of S for all $a \in S$. Further it is proved that (1) if A is a Γ-ideal in a left duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$ for all $s \in S$, (2) if A is a Γ-ideal in a right duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$ for all $s \in S$, (3) if A is a Γ-ideal in a duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$. It is proved that if A is a Γ-ideal in a duo Γ-semigroup S and $a, b \in S$, then (1) $a\Gamma b \in A$ iff $< a > \Gamma < b > \subseteq A$, (2) $a_1\Gamma a_2\Gamma \ldots \Gamma a_n a_n \subseteq A$ iff $< a_1 > \Gamma < a_2 > \Gamma \ldots \Gamma < a_n > \subseteq A$, (3) for any natural number n, $(a\Gamma)^n \subseteq A$ iff $(< a > \Gamma)^n \subseteq A$. It is also proved that in a duo Γ-semigroup S, a Γ-ideal P is prime Γ-ideal if and only if P is a completely prime Γ-ideal. Further it is proved that a Γ-ideal A of a duo Γ-semigroup S is a completely semiprime Γ-ideal of S if and only if A is a semiprime Γ-ideal.

We now characterize left duo Γ-semigroups.

Theorem 3.2.1: If A is a Γ-ideal in a left duo Γ-semigroup S, then $A_\Gamma(a) = \{ x \in S : x\Gamma a \subseteq A \}$ is a Γ-ideal of S for all $a \in S$.

Proof: Let $x \in A_\Gamma(a)$ and $s \in S$. $x \in A_\Gamma(a) \Rightarrow x\Gamma a \subseteq A$.

$x\Gamma a \subseteq A$, $s \in S$, A is a Γ-ideal $\Rightarrow s\Gamma x\Gamma a \subseteq A \Rightarrow s\Gamma x \subseteq A(\Gamma a)$.

Therefore $A_\Gamma(a)$ is a left Γ-ideal of S. Since S is a left duo Γ-semigroup, $A_\Gamma(a)$ is a Γ-ideal of S.

Theorem 3.2.2: If A is a Γ-ideal in a left duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$ for all $s \in S$.

Proof: Suppose that $x\Gamma y \subseteq A$. Let $s \in S$.

$x\Gamma y \subseteq A \Rightarrow x \in A_\Gamma(y)$.

$x \in A_\Gamma(y)$, $s \in S$, $A_\Gamma(y)$ is a Γ-ideal of $S \Rightarrow x\Gamma s \subseteq A_\Gamma(y) \Rightarrow x\Gamma s\Gamma y \subseteq A$.

We now characterize right duo Γ-semigroups.

Theorem 3.2.3: If A is a Γ-ideal in a right duo Γ-semigroup S, then $A_\Gamma(a) = \{ x \in S : a\Gamma x \subseteq A \}$ is a Γ-ideal of S for all $a \in S$.

Proof: Let $x \in A_\Gamma(a)$ and $s \in S$. $x \in A_\Gamma(a) \Rightarrow a\Gamma x \subseteq A$.

$a\Gamma x \subseteq A$, $s \in S$, A is a Γ-ideal $\Rightarrow a\Gamma x\Gamma s \subseteq A \Rightarrow x\Gamma s \subseteq A_\Gamma(a)$.
Therefore $A_r(a)$ is a right Γ-ideal of S.
Since S is a right duo Γ-semigroup, $A_r(a)$ is a Γ-ideal of S.

Theorem 3.2.4: If A is a Γ-ideal in a right duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$.

Proof: Suppose that $x\Gamma y \subseteq A$. Let $s \in S$. $x\Gamma y \subseteq A \Rightarrow y \in A_r(x)$.

Since $A_r(x)$ is a Γ-ideal of $S \Rightarrow s\Gamma y \subseteq A_r(x) \Rightarrow x\Gamma s\Gamma y \subseteq A$.

We now characterize duo Γ-semigroups.

Corollary 3.2.5: If A is a Γ-ideal in a duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$.

Theorem 3.2.6: If A is a Γ-ideal in a duo Γ-semigroup S, then $A_r(a) = \{ x \in S : xTa \subseteq A \}$ and $A_s(a) = \{ x \in S : aTx \subseteq A \}$ are Γ-ideals of S for all $a \in S$.

Proof: Since S is a duo Γ-semigroup, S is left duo Γ-semigroup and hence by theorem 3.2.1, $A_r(a) = \{ x \in S : xTa \subseteq A \}$ is a Γ-ideal of S. Again S is right duo Γ-semigroup and hence by theorem 3.2.3, $A_s(a) = \{ x \in S : aTx \subseteq A \}$ is a Γ-ideal of S.

Theorem 3.2.7: Let A be a Γ-ideal in a duo Γ-semigroup S and $a, b \in S$. Then $a\Gamma b \subseteq A$ if and only if $<a> \Gamma \subseteq A$.

Proof: Suppose that $<a> \Gamma \subseteq A$. Then $a\Gamma b \subseteq <a> \Gamma \subseteq A$.

Conversely suppose that $a\Gamma b \subseteq A$. Since S is a duo Γ-semigroup. By corollary 3.2.5, $a\Gamma b \subseteq A \Rightarrow a\Gamma s\Gamma b \subseteq A$ for all $s \in S \Rightarrow a\Gamma s\Gamma b \subseteq A$. Since A is a Γ-ideal, $a\Gamma S\Gamma b \subseteq A \Rightarrow S\Gamma a \Gamma S\Gamma b \subseteq A \Rightarrow <a> \Gamma \subseteq A$.

Theorem 3.2.8: Let A be a Γ-ideal in a duo Γ-semigroup S. Then $a_1\Gamma a_2\Gamma \ldots \Gamma a_n \subseteq A$ if and only if $<a_1> \Gamma <a_2> \ldots \Gamma <a_n> \subseteq A$.

Proof: Suppose that $<a_1> \Gamma <a_2> \ldots \Gamma <a_n> \subseteq A$.

Then $a_1\Gamma a_2\Gamma \ldots \Gamma a_n \subseteq <a_1> \Gamma <a_2> \ldots \Gamma <a_n> \subseteq A$.

Conversely suppose that $a_1\Gamma a_2\Gamma \ldots \Gamma a_n \subseteq A$.

Then for any $t \in <a_1> \Gamma <a_2> \ldots \Gamma <a_n>$, we have $t = s_1a_1a_2a_3a_4a_5a_6 \ldots a_ka_1a_2a_3a_4a_5a_6 \ldots a_n$, where $s_i \in S$ and $a_i, \beta_i \in \Gamma$.

Since $x, y \in S$, $x\Gamma y \subseteq A \Rightarrow x\Gamma s\Gamma y \subseteq A$, we have $t \in A$.

84
COROLLARY 3.2.9: Let \(A \) be a \(\Gamma \)-ideal in a duo \(\Gamma \)-semigroup \(S \). Then for any natural number \(n \), \((a \, \Gamma)^{n-1}a \subseteq A \) if and only if \((\langle a \rangle \, \Gamma)^{n-1} \, a \subseteq A \).

Proof: The proof follows from theorem 3.2.8, by taking \(a_1 = a_2 = a_3 = \ldots = a_n = a \).

THEOREM 3.2.10: Let \(S \) be a duo \(\Gamma \)-semigroup. A \(\Gamma \)-ideal \(P \) of \(S \) is prime \(\Gamma \)-ideal if and only if \(P \) is a completely prime \(\Gamma \)-ideal.

Proof: Suppose that \(P \) is a prime \(\Gamma \)-ideal of \(\Gamma \)-semigroup \(S \). Let \(x, y \in S \) and \(x \Gamma y \subseteq P \). Now \(x \Gamma y \subseteq P \), \(P \) is a \(\Gamma \)-ideal \(\Rightarrow x \Gamma y \, S^1 \subseteq P \).

Since \(S \) is duo \(\Gamma \)-semigroup, \(x \Gamma S^1 \, \Gamma y = x \Gamma y \, \Gamma S^1 \subseteq P \).

By corollary 2.2.7, either \(x \in P \) or \(y \in P \). Hence \(P \) is a completely prime \(\Gamma \)-ideal.

Conversely suppose that \(P \) is a completely prime \(\Gamma \)-ideal of \(S \).

By theorem 2.2.8, \(P \) is a prime \(\Gamma \)-ideal of \(S \).

COROLLARY 3.2.11: Let \(S \) be a commutative \(\Gamma \)-semigroup. A \(\Gamma \)-ideal \(P \) of \(S \) is prime \(\Gamma \)-ideal if and only if \(P \) is a completely prime \(\Gamma \)-ideal.

THEOREM 3.2.12: Let \(S \) be a duo \(\Gamma \)-semigroup. A \(\Gamma \)-ideal \(A \) of \(S \) is completely semiprime iff semiprime.

Proof: Suppose that \(A \) is a completely semiprime \(\Gamma \)-ideal of \(S \).

By theorem 2.3.7, \(A \) is a semiprime \(\Gamma \)-ideal of \(S \).

Conversely Suppose that \(A \) is a semiprime \(\Gamma \)-ideal of \(S \). Let \(x \in S \) and \(x \Gamma x \subseteq A \).

Now \(x \Gamma x \subseteq A \Rightarrow x \Gamma x \, S^1 \subseteq A \) for all \(s \in S \) \(\Rightarrow x \Gamma S^1 \, x \subseteq A \) for all \(s \in S \) \(\Rightarrow x \Gamma S^1 \, x \subseteq A \).

\(\Rightarrow x \in A \), since \(A \) is semiprime. Therefore \(A \) is a completely semiprime \(\Gamma \)-ideal of \(S \).

COROLLARY 3.2.13: Let \(S \) be a commutative \(\Gamma \)-semigroup. A \(\Gamma \)-ideal \(A \) of \(S \) is completely semiprime iff semiprime.

3.3. \(\Gamma \)-RADICALS IN DUO \(\Gamma \)-SEMIGROUPS

In this section, it is proved that, if \(A_1 = \) the intersection of all completely prime \(\Gamma \)-ideals of \(S \) containing \(A \), \(A_2 = \{ x \in S : (x \Gamma)^{n-1} x \subseteq A \) for some natural number \(n \} \), \(A_3 = \) the intersection of all prime \(\Gamma \)-ideals of \(S \) containing \(A \), \(A_4 = \{ x \in S : (x \, \Gamma)^{n-1} < x > \subseteq A \) for some natural number \(n \} \) for a \(\Gamma \)-ideal \(A \) of a \(\Gamma \)-semigroup \(S \), then
A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1. If A is a \Gamma-ideal of a commutative/duo \Gamma-semigroup then it is proved that A_1 = A_2 = A_3 = A_4. It is proved that if A is a \Gamma-ideal in a duo \Gamma-semigroup S, then (1) A_2 is the minimal completely semiprime \Gamma-ideal of S containing A, (2) A_4 is the minimal semiprime \Gamma-ideal of S containing A. It is proved that if \alpha \in \sqrt{A}$, then there exist a positive integer n such that $(\alpha \Gamma)^{n-1}a \subseteq A$. Further if A is a \Gamma-ideal of a duo \Gamma-semigroup S then it is proved that (1) $A_1 = \text{the intersection of all completely prime \Gamma-ideals of S containing A}$, (2) $A_4' = \text{the intersection of all minimal completely prime \Gamma-ideals of S containing A}$, (3) $A_4'' = \text{the minimal completely semiprime \Gamma-ideal of S containing A}$, (4) $A_2 = \{x \in S : (x \Gamma)^{n-1}x \subseteq A \text{ for some natural number } n \}$, (5) $A_3 = \text{the intersection of all prime \Gamma-ideals of S containing A}$, (6) $A_4' = \text{the intersection of all minimal prime \Gamma-ideals of S containing A}$, (7) $A_4'' = \text{the minimal semiprime \Gamma-ideal of S containing A}$, (8) $A_4 = \{x \in S : (<x > \Gamma)^{n-1} <x > \subseteq A \text{ for some natural number } n \}$ are equal.

NOTATION 3.3.1 : If A is a \Gamma-ideal of a \Gamma-semigroup S, then we associate the following four types of sets.

- $A_1 = \text{The intersection of all completely prime \Gamma-ideals of S containing A}$.
- $A_2 = \{x \in S : (x \Gamma)^{n-1}x \subseteq A \text{ for some natural number } n \}$
- $A_3 = \text{The intersection of all prime ideals of S containing A}$.
- $A_4 = \{x \in S : (<x > \Gamma)^{n-1} <x > \subseteq A \text{ for some natural number } n \}$

NOTE 3.3.2 : If A is a \Gamma-ideal of a \Gamma-semigroup S then $\text{rad } A = A_3$ and $\text{c.rad } A = A_4$.

THEOREM 3.3.3 : If A is a \Gamma-ideal of a \Gamma-semigroup S, then $A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1$.

Proof : (i) $A \subseteq A_4$: Let $x \in A$. Then $(<x > \Gamma)^0 <x > \subseteq A$ and hence $x \in A_4$. $\therefore A \subseteq A_4$.

(ii) $A_4 \subseteq A_3$: Let $x \in A_4$. Then $(<x > \Gamma)^{n-1} <x > \subseteq A$ for some $n \in N$.

Let P be any prime \Gamma-ideal of S containing A. Then $(<x > \Gamma)^{n-1} <x > \subseteq A \Rightarrow (<x > \Gamma)^{n-1} <x > \subseteq P$.

Since P is prime, $<x > \subseteq P$ and hence $x \in P$.

Since this is true for all prime \Gamma-ideals P containing A, $x \in A_3$. Therefore $A_4 \subseteq A_3$.

(iii) $A_3 \subseteq A_2$: Let $x \in A_3$. Suppose if possible $x \notin A_2$. Then $(x \Gamma)^{n-1}x \notin A$ for all $n \in N$.

Consider $T = U(x \Gamma)^{n-1}x$, where $x \in S$ and n is a natural number.

Let $a, b \in T$. Then $a \in (x \Gamma)^{r-1}x$, $b \in (x \Gamma)^{s-1}x$ for some $r, s \in N$.

86
Therefore \(aTb = (x\Gamma)^{n-1}x(x\Gamma)^{n-1}x = (x\Gamma)^{n-1}x \subseteq T \).

Therefore \(T \) is a \(\Gamma \)-subsemigroup of \(S \) and \(T \) is a \(c \)-system of \(S \) and \(x \in T \).

By theorem 2.2.4, \(P = S \cap T \) is a completely prime \(\Gamma \)-ideal of \(S \) and \(x \not\in P \).

By theorem 2.2.8, \(P \) is prime \(\Gamma \)-ideal of \(S \) and \(x \not\in P \).

Therefore \(x \not\in A_3 \). It is a contradiction. \(\therefore x \in A_2 \) and hence \(A_3 \subseteq A_2 \).

(iv) \(A_2 \subseteq A_1 \): Let \(x \in A_2 \). Now \(x \in A_2 \Rightarrow (x\Gamma)^{n-1}x \subseteq A \) for some natural number \(n \).

Let \(P \) be any completely prime \(\Gamma \)-ideal of \(S \) containing \(A \).

Then \((x\Gamma)^{n-1}x \subseteq A \subseteq P \Rightarrow (x\Gamma)^{n-1}x \subseteq P \Rightarrow x \in P \). Therefore \(x \in A_1 \). Therefore \(A_2 \subseteq A_1 \).

Hence \(A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1 \).

THEOREM 3.3.4: If \(A \) is a \(\Gamma \)-ideal of a commutative \(\Gamma \)-semigroup \(S \), then \(A_1 = A_2 = A_3 = A_4 \).

Proof: By theorem 3.3.3, \(A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1 \). By corollary 3.2.11, in a commutative \(\Gamma \)-semigroup \(S \), a \(\Gamma \)-ideal \(P \) is a prime \(\Gamma \)-ideal iff \(P \) is a completely prime \(\Gamma \)-ideal. So \(A_1 = A_3 \). By theorem 3.2.13, in a commutative \(\Gamma \)-semigroup \(S \), a \(\Gamma \)-ideal \(P \) is a semiprime \(\Gamma \)-ideal iff \(P \) is a completely semiprime \(\Gamma \)-ideal. So \(A_4 = A_2 \).

Therefore \(A_1 = A_2 = A_3 = A_4 \).

NOTE 3.3.5: If \(A \) is a \(\Gamma \)-ideal in a arbitrary \(\Gamma \)-semigroup, then \(A_1, A_2, A_3, A_4 \) need not be equal.

EXAMPLE 3.3.6: Let \(S \) be the free \(\Gamma \)-semigroup generated by two alphabets \(a, b \). It is clear that \(A = S\Gamma a\Gamma a\Gamma S \) is a \(\Gamma \)-ideal in \(S \). Since \((a\Gamma)^3a \subseteq S\Gamma a\Gamma a\Gamma S = A \), we have \(a \in A_2 \).

Evidently \((a\Gamma b\Gamma)^{n-1}a\Gamma b \not\subseteq S\Gamma a\Gamma a\Gamma S \) for all natural number \(n \) and thus \(a\Gamma b \not\subseteq A_2 \). Thus \(A_2 \) is not a \(\Gamma \)-ideal in \(S \). Therefore \(A_1 \neq A_2 \) and \(A_2 \neq A_3 \).

EXAMPLE 3.3.7: Let \(S \) be the free \(\Gamma \)-semigroup over the countable infinite alphabet \(\{ x_1, x_2, \ldots \} \) and \(\Gamma \) as \{ \(a_1, a_2, \ldots \} \). Consider the \(\Gamma \)-ideal \(A = \bigcup_{l(s)} (\langle s \rangle \Gamma^{|s|-1} < s >) \), where \(l(s) \) is the length of the word \(s \). For any \(s \in S \), \(x_1\Gamma s\Gamma x_1 > l(s)+1 < x_1\Gamma s\Gamma x_1 > \subseteq A \) and hence \(x_1\Gamma s\Gamma x_1 \subseteq A_4 \) for all \(s \in S \). If \(A_3 = A_4 \), then \(A_4 \) is a semiprime \(\Gamma \)-ideal and hence \(x_1 \in A_4 \). Therefore \(< x_1 > \Gamma^{n-1} < x_1 > \subseteq A \) for some natural number \(n \). Consider the word \(t = x_1a_1x_2a_2x_3a_3x_4a_4x_5 \ldots \ldots a_nx_1a_{n+1}x_{n+1} \).

Now \(t \in < x_1 > \Gamma^{n-1} < x_1 > \subseteq A \). So \(t \in < s \Gamma >^{l(s)-1} < s > \) for some \(s \in S \) with \(l(s) > 1 \).

Thus in \(t, s \) occurs at least two times, which is a contradiction. So \(A_3 \neq A_4 \).
THEOREM 3.3.8: If A is a Γ-ideal of a duo Γ-semigroup S, then $A_1 = A_2 = A_3 = A_4$.

Proof: By theorem 3.3.3, $A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1$. By theorem 3.1.10, in a duo Γ-semigroup S, a Γ-ideal P is a prime Γ-ideal iff P is a completely prime Γ-ideal.

So $A_1 = A_3$. By theorem 3.2.12, in a duo Γ-semigroup S, a Γ-ideal P is a semiprime Γ-ideal iff P is a completely semiprime Γ-ideal. So $A_4 = A_2$.

Therefore $A_1 = A_2 = A_3 = A_4$.

THEOREM 3.3.9: If A is a Γ-ideal of a duo Γ-semigroup S, then $\text{rad} A = c.\text{rad} A$.

Proof: By theorem 3.3.8, $\text{rad} A = c.\text{rad} A$.

THEOREM 3.3.10: If A is a Γ-ideal in a duo Γ-semigroup S, then $A_2 = \{x \in S : (x\Gamma)^{n-1} x \subseteq A \text{ for some } n \in \mathbb{N} \}$ is the minimal completely semiprime Γ-ideal of S containing A.

Proof: Clearly $A \subseteq A_2$ and hence A_2 is nonempty subset of S. Let $x \in A_2$ and $s \in S$.

Since $x \in A_2$, $(x\Gamma)^{n-1} x \subseteq A$ for some $n \in \mathbb{N}$. Now $(x\Gamma s)^{n-1} x \Gamma s \subseteq A$ and $(s\Gamma x)^{n-1} s\Gamma x \subseteq A$ implies $x\Gamma s, s\Gamma x \in A_2$. Therefore A_2 is a Γ-ideal of S containing A. Let $x \in S$ such that $x\Gamma x \subseteq A_2$. Then $(x\Gamma x\Gamma)^{n-1} x \Gamma x \subseteq A$.

Thus A_2 is a completely semiprime Γ-ideal of S containing A. Let P be a completely semi prime Γ-ideal of S containing A. Let $x \in A_2$. Then $(x\Gamma)^{n-1} x \subseteq A$ for some $n \in \mathbb{N}$. Since $A \subseteq P$, then $(x\Gamma)^{n-1} x \subseteq P$ for some $n \in \mathbb{N}$. Since P is completely semiprime Γ-ideal of S, $(x\Gamma)^{n-1} x \subseteq P \Rightarrow x \in P$. Therefore $A_2 \subseteq P$ and hence A_2 is the minimal completely semiprime Γ-ideal of S containing A.

THEOREM 3.3.11: If A is a Γ-ideal in a duo Γ-semigroup S, then $A_4 = \{x \in S : (< x >\Gamma)^{n-1} < x > \subseteq A \text{ for some } n \in \mathbb{N} \}$ is the minimal semiprime Γ-ideal of S containing A.

Proof: Clearly $A \subseteq A_4$ and hence A_4 is nonempty subset of S. Let $x \in A_4$ and $s \in S$.

Since $x \in A_4$, $(< x >\Gamma)^{n-1} < x > \subseteq A$ for some $n \in \mathbb{N}$.

Now $(< x s \Gamma >\Gamma)^{n-1} < x s \Gamma > \subseteq (< x >\Gamma)^{n-1} < x > \subseteq A$ and $(s\Gamma x >\Gamma)^{n-1} < s\Gamma x > \subseteq (< x >\Gamma)^{n-1} < x > \subseteq A$ implies $x s \Gamma, s\Gamma x \subseteq A_4$.

Therefore A_4 is a Γ-ideal of S containing A. Let $x \in S$ such that $(< x >\Gamma) < x > \subseteq A_4$.

88
Then \((x \Gamma^n x) \leq A\) implies \((x \Gamma)^n \leq A\) \(\Rightarrow x \in A_4\).

Thus \(A_4\) is semiprime \(\Gamma\)-ideal of \(S\) containing \(A\).

Let \(Q\) be a semiprime \(\Gamma\)-ideal of \(S\) containing \(A\). Let \(x \in A_4\). Then \((x \Gamma^n x) \leq A\) for some \(n \in \mathbb{N}\). Since \(A \subseteq Q\), then \((x \Gamma^n x) \leq Q\) for some \(n \in \mathbb{N}\).

Since \(Q\) is a semiprime \(\Gamma\)-ideal of \(S\), \((x \Gamma^n x) \leq Q\) \(\Rightarrow x \in Q\).

Therefore \(A_4 \subseteq Q\) and hence \(A_4\) is the minimal semiprime \(\Gamma\)-ideal of \(S\) containing \(A\).

COROLLARY 3.3.12 : If \(A\) is a \(\Gamma\)-ideal of a duo \(\Gamma\)-semigroup \(S\) then

1. \(A_1 = \) the intersection of all completely prime \(\Gamma\)-ideals of \(S\) containing \(A\),
2. \(A_2 = \) the intersection of all minimal completely prime \(\Gamma\)-ideals of \(S\) containing \(A\),
3. \(A_3 = \) the minimal completely semiprime \(\Gamma\)-ideal of \(S\) containing \(A\),
4. \(A_4 = \) all \((x \Gamma^n x) \leq A\) for some natural number \(n\),
5. \(A_5 = \) the intersection of all prime \(\Gamma\)-ideals of \(S\) containing \(A\),
6. \(A_6 = \) the intersection of all minimal prime \(\Gamma\)-ideals of \(S\) containing \(A\),
7. \(A_7 = \) the minimal semiprime \(\Gamma\)-ideal of \(S\) containing \(A\),
8. \(A_8 = \) all \((x \Gamma^n x) \leq A\) for some natural number \(n\) are equal.

THEOREM 3.3.13 : If \(a \in \sqrt{A}\), then there exist a positive integer \(n\) such that \((a \Gamma)^n a \subseteq A\).

Proof : By theorem 3.3.3, \(A_3 \subseteq A_2\) and hence \(a \in \sqrt{A} = A_3 \subseteq A_2\).

Therefore \((a \Gamma)^n a \subseteq A\) for some \(n \in \mathbb{N}\).

3.4. ARCHIMEDEAN \(\Gamma\)-SEMIGROUPS

In this section, the terms; Archimedean \(\Gamma\)-semigroup and strongly Archimedean \(\Gamma\)-semigroup are introduced. It is proved that if \(S\) is a duo \(\Gamma\)-semigroup, then the conditions (1) \(S\) is strongly Archimedean, (2) \(S\) is Archimedean, (3) \(S\) has no proper completely prime \(\Gamma\)-ideals and (4) \(S\) has no proper prime \(\Gamma\)-ideals; are equivalent.

We now introduce the notions of archimedean \(\Gamma\)-semigroup and strongly archimedean \(\Gamma\)-semigroup.

DEFINITION 3.4.1 : A \(\Gamma\)-semigroup \(S\) is said to be an **archimedean \(\Gamma\)-semigroup** provided for any \(a, b \in S\), there exists a natural number \(n\) such that \((a \Gamma)^n a \subseteq b\).
DEFINITION 3.4.2: A Γ-semigroup S is said to be a **strongly archimedean** Γ-semigroup provided for any $a, b \in S$, there is a natural number n such that $(\langle a \rangle \Gamma)^{n-1} < a > \subseteq < b >$.

We now characterize archimedean Γ-semigroups.

THEOREM 3.4.3: If S is a duo Γ-semigroup, then S is strongly archimedean if and only if archimedean.

Proof: Suppose that S is strongly Archimedean. Then for any $a, b \in S$, there is a natural number n such that $(\langle a \rangle \Gamma)^{n-1} < a > \subseteq < b >$. Therefore $(a \Gamma)^{n-1} a \subseteq (\langle a \rangle \Gamma)^{n-1} < a > \subseteq < b >$ and hence S is Archimedean.

Conversely suppose that S is archimedean. Let $a, b \in S$. Since S is archimedean, there exists a natural number n such that $(\langle a \rangle \Gamma)^{n-1} < a > \subseteq < b > \subseteq S \Gamma b \Gamma S$. Since $S \Gamma b \Gamma S$ is a Γ-ideal of a duo Γ-semigroup S, by corollary 3.2.5, $(a \Gamma)^{n-1} a \subseteq S \Gamma b \Gamma S \Rightarrow (\langle a \rangle \Gamma)^{n-1} < a > \subseteq S \Gamma b \Gamma S$. Therefore S is a strongly Archimedean duo Γ-semigroup.

THEOREM 3.4.4: If S is a duo Γ-semigroup, then S is archimedean if and only if S has no proper prime Γ-ideals.

Proof: Suppose that S is archimedean Γ-semigroup. Let P be prime Γ-ideal of S. Let $a, b \in S$. Since P is Γ-ideal, $S \Gamma a \Gamma S \subseteq P$. Since S is archimedean, $(b \Gamma)^{n-1} \subseteq S \Gamma a \Gamma S$ for some natural number n. Thus $(b \Gamma)^{n-1} \subseteq S \Gamma a \Gamma S \subseteq P$. Since S is a duo Γ-semigroup, by theorem 3.2.10, P is completely prime. Thus $(b \Gamma)^{n-1} b \subseteq P \Rightarrow b \in P$. Hence $S = P$. Therefore S has no proper prime Γ-ideals.

Conversely suppose that S has no proper prime Γ-ideals. Then for any $b \in S$, the intersection of all prime Γ-ideals of S containing $B = < b >$ is S itself. Therefore $B_3 = S$. We have $B_4 = \{ x \in S : (x \Gamma)^{n-1} \subseteq < x > \subseteq < b > \text{ for some } n \in \mathbb{N} \} = S$. Therefore for any $a \in S$, $(\langle a \rangle \Gamma)^{n-1} < a > \subseteq < b > \text{ for some natural number } n$. So $(\langle a \rangle \Gamma)^{n-1} < a > \subseteq S \Gamma b \Gamma S$. Thus S is strongly archimedean.

Hence by theorem 3.4.3, S is archimedean.

COROLLARY 3.4.5: If S is a duo Γ-semigroup, then the conditions (1) S is strongly Archimedean, (2) S is Archimedean, (3) S has no proper completely prime Γ-ideals and (4) S has no proper prime Γ-ideals are equivalent.
3.5. SIMPLE Γ-SEMIGROUPS

In this section, the terms; left simple Γ-semigroup, right simple Γ-semigroup, simple Γ-semigroup are introduced. It is proved that (1) a Γ-semigroup S is a left simple Γ-semigroup if and only if $S\Gamma a = S$ for all $a \in S$, (2) a Γ-semigroup S is a right simple Γ-semigroup if and only if $a\Gamma S = S$ for all $a \in S$, (3) a Γ-semigroup S is a simple Γ-semigroup if and only if $S\Gamma a\Gamma S = S$ for all $a \in S$. It is also proved that if S is a left simple Γ-semigroup or a right simple Γ-semigroup then S is a simple Γ-semigroup. Further it is proved that if S is a duo Γ-semigroup and $a \in S$ then (1) a is regular, (2) a is left regular, (3) a is right regular, (4) a is intra regular and (5) a is semisimple are equivalent.

We now introduce a left simple Γ-semigroup.

DEFINITION 3.5.1 : A Γ-semigroup S is said to be a left simple Γ-semigroup if S is its only left Γ-ideal.

We now characterize left simple Γ-semigroups.

THEOREM 3.5.2 : A Γ-semigroup S is a left simple Γ-semigroup if and only if $S\Gamma a = S$ for all $a \in S$.

Proof : Suppose that S is a left simple Γ-semigroup and $a \in S$. Let $t \in S\Gamma a$, $s \in S$, $\gamma \in \Gamma$.

$t \in S\Gamma a \Rightarrow t = s_i\alpha a$ where $s_i \in S$ and $\alpha \in \Gamma$.

Now $syt = sy(s_i\alpha a) = (sy)s_i\alpha a \in S\Gamma a \Rightarrow S\Gamma a$ is a left Γ-ideal of S.

Since S is a left simple Γ-semigroup, $S\Gamma a = S$.

Therefore $S\Gamma a = S$ for all $a \in S$.

Conversely suppose that $S\Gamma a = S$ for all $a \in S$. Let L be a left Γ-ideal of S.

Let $l \in L$. Then $l \in S$. By assumption $S\Gamma l = S$.

Let $s \in S$. Then $s \in S\Gamma l \Rightarrow s = tal$ for some $t \in S$, $\alpha \in \Gamma$.

$l \in L$, $t \in S$, $\alpha \in \Gamma$ and L is a left Γ-ideal $\Rightarrow tal \in L \Rightarrow s \in L$.

Therefore $S \subseteq L$. Clearly $L \subseteq S$ and hence $S = L$.

Therefore S is the only left Γ-ideal of S. Hence S is left simple Γ-semigroup.
We now introduce a right simple Γ-semigroup.

DEFINITION 3.5.3 : A Γ-semigroup S is said to be a **right simple Γ-semigroup** if S is its only right Γ-ideal.

We now characterize right simple Γ-semigroups.

THEOREM 3.5.4 : A Γ-semigroup S is a right simple Γ-semigroup if and only if $a\Gamma S = S$ for all $a \in S$.

Proof : Suppose that S is a right simple Γ-semigroup and $a \in S$. Let $t \in a\Gamma S$, $s \in S$, $x \in \Gamma$.

$t \in a\Gamma S \Rightarrow t = axs$, where $s \in S$ and $a \in \Gamma$.

Now $t\gamma = (axs)\gamma \in a\Gamma \gamma S \Rightarrow a\Gamma S$ is a right Γ-ideal of S.

Since S is a right simple Γ-semigroup, $a\Gamma S = S$.

Therefore $a\Gamma S = S$ for all $a \in S$.

Conversely suppose that $a\Gamma S = S$ for all $a \in S$.

Let R be a right Γ-ideal of a Γ-semigroup S.

Let $r \in R$. Then $r \in S$. By assumption $r\Gamma S = S$.

Let $s \in S$. Then $s \in r\Gamma S \Rightarrow s = rat$ for some $t \in S$, $a \in \Gamma$.

$r \in R$, $t \in S$, $a \in \Gamma$ and R is a right Γ-ideal $\Rightarrow rat \in R \Rightarrow s \in R$.

Therefore $S \subseteq R$. Clearly $R \subseteq S$ and hence $S = R$.

Therefore S is the only right Γ-ideal of S. Hence S is right simple Γ-semigroup.

We now introduce a simple Γ-semigroup.

DEFINITION 3.5.5 : A Γ-semigroup S is said to be **simple Γ-semigroup** if S is its only two-sided Γ-ideal.

We now characterize simple Γ-semigroups

THEOREM 3.5.6 : If S is a left simple Γ-semigroup or a right simple Γ-semigroup then S is a simple Γ-semigroup.

Proof : Suppose that S is a left simple Γ-semigroup. Then S is the only left Γ-ideal of S.

If A is a Γ-ideal of S, then A is a left Γ-ideal of S and hence $A = S$.

Therefore S itself is the only Γ-ideal of S and hence S is a simple Γ-semigroup.

Suppose that S is a right simple Γ-semigroup. Then S is the only right Γ-ideal of S.

If A is a Γ-ideal of S, then A is a right Γ-ideal of S and hence $A = S$.

Therefore S itself is the only Γ-ideal of S and hence S is a simple Γ-semigroup.
THEOREM 3.5.7: A Γ-semigroup S is simple Γ-semigroup if and only if $S \Gamma a S = S$ for all $a \in S$.

Proof: Suppose that S is a simple Γ-semigroup and $a \in S$.

Let $i \in S \Gamma a S$, $s \in S$ and $y \in \Gamma$.

$t \in S \Gamma a S \Rightarrow t = s_1 \alpha a \beta s_2$ where $s_1, s_2 \in S$ and $\alpha, \beta \in \Gamma$.

Now $t y s = (s_1 \alpha a \beta s_2) y s = s_1 \alpha a \beta (s_2 y s) \in S \Gamma a S$

and $s y t = s y (s_1 \alpha a \beta s_2) = (s y s_1) \alpha a \beta s_2 \in S \Gamma a S$. Therefore $S \Gamma a S$ is a Γ-ideal of S.

Since S is a simple Γ-semigroup, S itself is the only Γ-ideal of S and hence $S \Gamma a S = S$.

Conversely suppose that $S \Gamma a S = S$ for all $a \in S$. Let I be a Γ-ideal of S.

Let $a \in I$. Then $a \in S$. So $S \Gamma a S = S$.

Let $s \in S$. Then $s \in S \Gamma a S \Rightarrow s = t_1 \alpha a \beta t_2$ for some $t_1, t_2 \in S$, $\alpha, \beta \in \Gamma$.

$a \in I$, $t_1, t_2 \in S$, $\alpha, \beta \in \Gamma$, I is a Γ-ideal of $S \Rightarrow t_1 \alpha a \beta t_2 \in I \Rightarrow s \in I$.

Therefore $S \subseteq I$. Clearly $I \subseteq S$ and hence $S = I$.

Therefore S is the only Γ-ideal of S. Hence S is a simple Γ-semigroup.

THEOREM 3.5.8: If S is a duo Γ-semigroup, then the following are equivalent for any element $a \in S$.

1) a is regular.
2) a is left regular.
3) a is right regular.
4) a is intra regular.
5) a is semisimple.

Proof: Since S is duo Γ-semigroup, $a S^1 \Gamma a = S^1 \Gamma a$.

We have $a S^1 \Gamma a = a S \Gamma a S = S^1 \Gamma a \Gamma a = <a \Gamma a> = <a > \Gamma <a >$.

(1) \Rightarrow (2): Suppose that a is regular. Then $a = a x a y a$ for some $x \in S$ and $\alpha, \beta \in \Gamma$.

Therefore $a \in a S^1 \Gamma a = a S \Gamma a S $ $\Rightarrow a = a \gamma a \delta a$ for some $\gamma \in S^1$, $\gamma, \delta \in \Gamma$.

Therefore a is left regular.

(2) \Rightarrow (3): Suppose that a is left regular. Then $a = a x a \beta a$ for some $x \in S$ and $\alpha, \beta \in \Gamma$.

Therefore $a \in a S \Gamma a S^1 = S \Gamma a S \Gamma a \Rightarrow a = \gamma \gamma a \alpha a a$ for some $\gamma \in S^1$, $\gamma, \delta \in \Gamma$.

Therefore a is right regular.

(3) \Rightarrow (4): Suppose that a is right regular. Then for some $x \in S$, $\alpha, \beta \in \Gamma$; $a = x a a \beta a$.

Therefore $a \in S^1 \Gamma a S = <a \Gamma a > \Rightarrow a = x a a \beta a y \gamma a$ for some $x, y \in S^1$ and $\alpha, \beta, \gamma \in \Gamma$.

Therefore a is intra regular.
(4) ⇒ (5): Suppose that \(a \) is intra regular. Then \(a = xaaβαyy \) for some \(x, y \in S^1 \) and \(a, β, y \in Γ \). Therefore \(a \in < a > Γ < a > \). Therefore \(a \) is semisimple.

(5) ⇒ (1): Suppose that \(a \) is semisimple. Then \(a \in < a > Γ < a > = aΓS^1Γa \) \(⇒ a \in aαβαa \) for some \(x \in S^1 \) and \(α, β \in Γ \). Therefore \(a \) is a regular element.