Contents

1. **Introduction**
 1.1 Introduction
 1.2 Methodology
 1.3 Summarized details of each chapter
 1.4 References

2. **Thermodynamic analysis of dry autothermal reforming of Glycerol**
 2.1 Glycerol as fuel
 2.2 Thermodynamic analysis
 2.3 Results and Discussion
 2.3.1 Hydrogen yield
 2.3.2 CO yield
 2.3.3 Variation of Syngas ratio of product gas
 2.3.4 Total hydrogen potential
 2.3.5 Methane formation
 2.3.6 CO$_2$ obtained in product gas
 2.3.7 Water formation
 2.3.8 Carbon formation
 2.3.9 Process Enthalpy and Thermoneutral points
 2.4 Conclusions
 2.5 References

3. **Thermoneutral point analysis of ethanol dry autothermal reforming**
 3.1 Ethanol as fuel
 3.2 Methodology
 3.3 Results and Discussion
 3.3.1 Thermoneutral points for DATR of ethanol

4. **References**
3.3.2 Hydrogen yield at TNP
3.3.3 CO yield at TNP
3.3.4 Syngas amount at TNP
3.3.5 Syngas ratio at TNP
3.3.6 Methane formation at TNP
3.3.7 Water formation at TNP
3.3.8 Carbon formation at TNP
3.3.9 CO₂ conversion (%) at TNP

3.4 Conclusions
3.5 References

4 Application of DATR in gasoline fuel processors

4.1 Fuel processors and Gasoline
4.2 Methodology
4.3 Results and Discussion
 4.3.1 Process enthalpy
 4.3.2 Thermo neutral points
 4.3.3 Total hydrogen
 4.3.4 CO yield
 4.3.5 Water formation
 4.3.6 Carbon formation
 4.3.7 Process energy calculations
4.4 Conclusion
4.5 References

5 Dry autothermal gasification of lignite coal

5.1 Coal as fuel
5.2 Methodology
5.3 Results and discussion
5.3.1 Effect of pressure 108
5.3.2 Syngas yield 110
5.3.3 Methane Formation 112
5.3.4 Carbon (in coal) conversion (%) 114
5.3.5 Net CO$_2$ Emission / CO$_2$ utilization 117
5.3.6 Gasification enthalpy and thermoneutral points 119
5.3.7 Syngas ratio 122
5.3.8 Applications 123
5.4 Conclusion 131
5.5 References 132

6 DATR in Chemical looping combustion systems 140
6.1 Introduction 142
6.1.1 Chemical looping combustion 144
6.1.2 Dry autothermal reformer 151
6.2 Conceptual Process Design and Methodology 145
6.3 Results and Discussion 149
6.3.1 Gibbs Free Energy of CLC reactions 149
6.3.2 Reaction Enthalpy of DATR reactor 150
6.3.3 Hydrogen yield 152
6.3.4 Carbon Monoxide yield 164
6.3.5 CO$_2$ Conversion 155
6.3.6 Methane formation 157
6.3.7 Syngas yield 158
6.3.8 Syngas ratio 160
6.3.9 Carbon formation 161
6.3.10 H$_2$O conversion 163
6.4 Conclusion 164
6.5 References 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Concluding remarks</td>
<td>170</td>
</tr>
<tr>
<td>7.1</td>
<td>Conclusions</td>
<td>171</td>
</tr>
<tr>
<td>7.2</td>
<td>Recommendations</td>
<td>171</td>
</tr>
<tr>
<td>7.3</td>
<td>Publications</td>
<td>172</td>
</tr>
</tbody>
</table>