1. On page 34, since sampling is done without replacement, (i) should be read as

(i) Given \( r = k, \mathbf{N} = \mathbf{n} \) and for any \( j, 1 \leq j \leq k, \mathbf{M}_j = (M_{1j}, \ldots, M_{Lj})^\top \) has multivariate hypergeometric distribution given by

\[
P \left( \mathbf{M}_j = \mathbf{m}_j \mid \mathbf{N} = \mathbf{n}, r = k, 1 \leq j \leq k \right) = \binom{n_j}{m_j} \prod_{h=1}^l \binom{r_{kh}}{m_{kh}} \cdot \sum_{h=1}^l m_{kh} = m_{kj}.
\]

2. On page 35, due to correction in (i) on page 34, equation (1) now simplifies to

\[
\prod_{k=1}^L \left[ \frac{r_{kk}!}{(r_{kk} - t_{kk})!} \prod_{j=1}^k \left( \frac{N}{m_{jj}} \right)^{-1} \right].
\]

3. On page 38, due to corrections on pages 34 and 35, equation (2) becomes,

\[
P \left( \mathbf{N} = \mathbf{n} \mid s_1(k) \right) \propto \prod_{k=1}^L \left[ \frac{r_{kk}!}{(r_{kk} - t_{kk})!} \prod_{j=1}^k \left( \frac{N}{m_{jj}} \right)^{-1} \right] \cdot \frac{\nu! \Gamma(\nu + \tau) \prod_{k=1}^L \Gamma(\nu_k + n_k)}{\Gamma(\nu + \tau) \prod_{k=1}^L \Gamma(\nu_k)} \left( \frac{N_0}{N_0 + 1} \right)^\tau.
\]

4. We know that the multinomial distribution is a good approximation to the multivariate hypergeometric distribution even for moderate sample sizes. Thus
these corrections do not have much of an effect on the simulation studies reported in Section 3.5. Due to this reason I did not modify these simulation studies.

Additional references suggested by the referees
