CONTENTS

INTRODUCTION

CHAPTER I
THE MICROTRON ELECTRON ACCELERATOR

1.1 Principle of operation and types of microtrons
1.2 Synchronism with constant energy gain per orbit
1.3 Synchronism for a variable energy gain per orbit
1.4 Motion of the resonant point
1.5 Matrices representing the elements of the magnetic guide field of racetrack microtron
1.6 The criterion for the stability of betatron oscillations
1.7 Stability regions of betatron oscillations in a four sector racetrack geometry

REFERENCES.

CHAPTER 2

PART I
THE RACETRACK MICROTRON AT THE POONA UNIVERSITY

2.1 The vacuum system
2.2 The microwave system
2.3 The magnetic circuit
2.4 Other parts of the microtron

Part II

BEAM CURRENT LOSSES IN THE MICROTRON ACCELERATOR

2.5 Improved resonance in microtrons by orbit shaping

References

CHAPTER 3

A DESIGN STUDY OF A 10 MeV X-BAND CONVENTIONAL MICROTRON

3.1 Phase stable region
3.2 Phase stability (of 10 MeV microtron)
3.3 Synchronization and injection
3.4 The microwave accelerating cavity

References

CHAPTER 4

A THRESHOLD GAS CERENKOV COUNTER

4.1 A threshold gas Cerenkov counter
4.2 Measurement of the energy spread of the electron beam using threshold Cerenkov detectors.

References
CHAPTER 5

APPLICATION OF A MICROTRON ACCELERATOR TO THE GENERATION OF MILLIMETER WAVES

5.1 Use of Cerenkov effect to generate microwaves

5.2 Electron bunching in microtron

5.3 Effect of alternating electric field on Cerenkov radiation

References

ACKNOWLEDGEMENTS

* * * * * * *
* * * * * *
* * * * *