Notations

\(R_{ij} \) = Daily return of the \(i^{th} \) security, where, \(i=1,2,3,\ldots,n. \) and \(j=1,2,3,\ldots,k. \)

\(\sigma_i \) = Standard Deviation of the \(i^{th} \) security

\(\mu_i \) = Average return of the \(i^{th} \) security

\(\mu_{\text{min}} \) = Minimum return of the security in the portfolio

\(\mu_{\text{max}} \) = Maximum return of the security in the portfolio

\(R^O_p \) = Expected return of the optimum portfolio

\(W_i^* \) = Optimum weight of the \(i^{th} \) security

\(R_i \) = Expected return of the \(i^{th} \) security

\(n \) = Number of the securities in the portfolio

\(\sigma^O_p \) = Risk of the optimum portfolio

\(r_{ij} \) = Correlation coefficient between \(i^{th} \) and \(j^{th} \) securities

\(\sigma_i \) = Standard Deviation of \(i^{th} \) security.

\(w_i^{\text{HO}} \) = Heuristic optimistic weight of the \(i^{th} \) security

\(\mu_i \) = Expected return of \(i^{th} \) security

\(R^P_p \) = Expected return of the optimistic portfolio

\(\sigma^P_p \) = Standard Deviation of the heuristic optimistic portfolio.

\(w_i^{\text{HP}} \) = Heuristic pessimistic weight of \(i^{th} \) security

\(R^P_p \) = Expected return of the pessimistic portfolio

\(\sigma^P_p \) = Standard Deviation of the pessimistic portfolio
\(\alpha \) = Coefficient of optimism of the investor (0 ≤ \(\alpha \) ≤ 1)

\(\Sigma \) = Dispersion matrix of the securities

\(w \) = Weight vector

\(R \) = Expected return vector

\(w_{i}^{HRP} \) = Heuristic risk planner weight of the ‘\(i \)’th security

\(R_{p}^{HRP} \) = Expected return of the heuristic risk planner portfolio

\(\sigma_{p}^{HRP} \) = Standard Deviation of the heuristic risk planner portfolio

\(R_{p}^{HRS} \) = Expected return of the heuristic random selector portfolio

\(\sigma_{p}^{HRS} \) = Standard Deviation of the heuristic random selector portfolio

\(w_{H}(\alpha) \) = Weight of the ‘\(i \)’th security in the heuristic portfolio with coefficient of optimism as \(\alpha \)

\(R_{H} \) = Expected return of the general heuristic portfolio

\(\sigma_{H} \) = Standard deviation of the general heuristic portfolio

\(R_{m} \) = Rate of return on the market index, a random variable

\(\alpha_{i} \) = Expected value of the component of return independent of the market’s performance

\(\beta_{i} \) = The expected change in the rate of return on stock ‘\(i \)’ associated with a 1% change in the market return

\(e_{i} \) = Error component
\[\sigma_m^2 = \text{Variance of market return} \]

\[\sigma_{ei}^2 = \text{Variance of error term} \]

\[\overline{R_i} = \text{Average return of } 'i^{th} \text{ security} \]

\[R_p = \text{Return of the portfolio} \]

\[w_i = \text{Weight of } 'i^{th} \text{ security} \]

\[\sigma_p = \text{Standard deviation of the portfolio} \]

\[\sigma_p^2 = \text{Variance of returns or portfolio risk} \]

\[C_i = \text{Cut-off rate} \]

\[C^* = \text{A candidate of } C_i \]