NOMENCLATURE

\(u \), \(v \), \(w \) = Radial and velocity of fluid

\(u_p \), \(v_p \) = Velocity of the dust

\(p \) = pressure

\(\gamma \) = Kinematic coefficient of viscosity

\(k \) = Stokes resistance coefficient \((= 6\pi \mu r)\) for spherical Dust particles of radius \(r \).

\(\mu \) = coefficient of viscosity

\(N_o \) = constant number density of the dust particles.

\(\sigma \) = conductivity of fluid

\(m \) = mass of the dust particles

\(t \) = time

\(B_o \) = magnitude of magnetic induction \(B \)

\(I = G = \frac{mN_o}{e} \) mass concentration

\(\rho \) = Density of the fluid

\(\sigma \) = Relaxation time parameter

\(R_e = \frac{\rho h u_0}{\mu} \) Reynolds number

\(S = \frac{v_p}{u_0} \) Suction parameter

\(P_r = \frac{u_p}{k} \) prandtl number

\(H^2 = \frac{\sigma B^2 h^2}{\mu} \) Hartman number

\(Ec = \frac{c^2}{c_p(T_1-T_2)} \) Eckert number

\(\tilde{\alpha}^2 = \frac{h^2\mu}{\eta} \) non-dimensional Couple Stress parameter

\(Q \) = Volumetric flow rate for fluid

\(Q_p \) = Volumetric flow rate for dust particle

\(C \) = Skin friction coefficients for fluid

\(C_p \) = Skin friction coefficients for dust particle
\[\alpha = \frac{Nd^2q}{\mu_c} \text{ inverse stokes number} \]

\[\beta = \frac{\mu_p}{\mu} \text{ viscosity ratio} \]

\[B_e = \sigma\gamma B_o \text{ Hall factor} \]

\[B_i = \text{ ion slip parameter} \]

\[\mu_p = \text{ particle-phase velocity} \]

\[\mu = \text{ the apparent viscosity of fluid} \]

\[t = \text{ time co-ordinate} \]

\[\nabla^2 = \text{ Laplacian operator} \]

\[\eta = \text{ constants associated with couple stress} \]

\[L_o = \frac{qh^2}{\mu_0 Y_T} \text{ temperature relaxation time parameter} \]

\[R = \frac{K\mu h^2}{\mu_0} \text{ particle concentration parameter} \]

\[a = \text{ viscosity variation parameter} \]

\[\sum = \text{Summation with respect to a specific index} \]