LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 2.1</td>
<td>Power Flow in Meshed Paths</td>
<td>12</td>
</tr>
<tr>
<td>Fig 2.2</td>
<td>Schematic diagrams of FACTS Controller</td>
<td>18</td>
</tr>
<tr>
<td>Fig 2.3</td>
<td>Single phase full wave bridge converter</td>
<td>21</td>
</tr>
<tr>
<td>Fig 2.4</td>
<td>Three phase full wave bridge converter</td>
<td>25</td>
</tr>
<tr>
<td>Fig 2.5</td>
<td>Transformer Connection for 12-Pulse Operation</td>
<td>28</td>
</tr>
<tr>
<td>Fig 2.6</td>
<td>Transformer connections in series & parallel</td>
<td>31</td>
</tr>
<tr>
<td>Fig 2.7</td>
<td>Voltage sourced converters</td>
<td>33</td>
</tr>
<tr>
<td>Fig 2.8</td>
<td>Current sourced converters</td>
<td>36</td>
</tr>
<tr>
<td>Fig 3.1</td>
<td>Power Triangle</td>
<td>40</td>
</tr>
<tr>
<td>Fig 3.2</td>
<td>Circuit diagrams with inductive load</td>
<td>44</td>
</tr>
<tr>
<td>Fig 3.3</td>
<td>Vector diagram to represent current components</td>
<td>45</td>
</tr>
<tr>
<td>Fig 3.4</td>
<td>Delta connected static capacitors bank</td>
<td>46</td>
</tr>
<tr>
<td>Fig 3.5</td>
<td>FACTS Controller Circuit Diagram</td>
<td>48</td>
</tr>
<tr>
<td>Fig 3.6</td>
<td>Power Triangle for FACTS</td>
<td>49</td>
</tr>
<tr>
<td>Fig 3.7</td>
<td>Simulation diagram for improvement of Power Factor</td>
<td>50</td>
</tr>
<tr>
<td>Fig 3.8</td>
<td>Circuit Diagram with Inductive load</td>
<td>50</td>
</tr>
<tr>
<td>Fig 3.9</td>
<td>Input current waveform for Inductive Load</td>
<td>51</td>
</tr>
<tr>
<td>Fig 3.10</td>
<td>Real and Reactive power waveforms</td>
<td>51</td>
</tr>
<tr>
<td>Fig 3.11</td>
<td>Simulated diagram of Delta connected static capacitors bank</td>
<td>51</td>
</tr>
<tr>
<td>Fig 3.12</td>
<td>Waveform of Improved active & reactive power quality response</td>
<td>52</td>
</tr>
<tr>
<td>Fig 3.13</td>
<td>Simulated diagram of FACTS (UPFC)-Single phase rectifier</td>
<td>52</td>
</tr>
<tr>
<td>Fig 3.14</td>
<td>Simulated diagram of FACTS Controller Approach (RP/AP= tan Φ)</td>
<td>53</td>
</tr>
<tr>
<td>Fig 3.15</td>
<td>Real & Reactive power waveform of UPFC with Max. p.f</td>
<td>53</td>
</tr>
<tr>
<td>Fig 3.16</td>
<td>Output waveform of diode rectifier voltage with FACTS controllers</td>
<td>54</td>
</tr>
<tr>
<td>Fig 4.1</td>
<td>Methods of Harmonics Reduction</td>
<td>57</td>
</tr>
<tr>
<td>Fig 4.2</td>
<td>Diode-bridge rectifier with a booster converter</td>
<td>57</td>
</tr>
</tbody>
</table>
Fig 4.2 Single line diagram of an active filter 60
Fig 4.3 Single Line diagram of a hybrid filter 63
Fig 4.4 Circuit diagram for power factor correction 65
Fig 4.5 Circuit diagram of a six-switch rectifier 66
Fig 4.6 phasor diagram of source voltage, fundamental voltage and line current 66
Fig 4.7 Circuit diagram of zigzag TR. Rectifier 67
Fig 4.8 Vector diagram of voltage in zigzag transformer 67
Fig 4.9 Simulated diagram of Diode-bridge rectifier 69
Fig 4.10 Input voltage Vs Time waveform 69
Fig 4.11 Output current Vs Time waveform 70
Fig 4.12 Output voltage Vs Time waveform 70
Fig 4.13 Simulated diagram of active filter 71
Fig 4.14 Input D.C voltage Vs Time waveform 71
Fig 4.15 A.C voltage Vs Time waveform 72
Fig 4.16 Three-phase voltage Vs Time waveform 72
Fig 4.17 Three-phase Current Vs Time waveform 72
Fig 4.18 Output current Vs Time waveform 73
Fig 4.19 output voltage Vs Time waveform 73
Fig 4.20 Simulated diagram of a hybrid filter 74
Fig 4.21 Input D.C voltage Vs Time waveform 74
Fig 4.22 Three-phase voltage Vs Time waveform 75
Fig 4.23 Three-phase current Vs Time waveform 75
Fig 4.24 output current Vs Time waveform 76
Fig 4.25 output voltage Vs Time waveform 76
Fig 4.26 Simulated diagrams for power factor correction 77
Fig 4.27 output current Vs Time waveform 77
Fig 4.28 output voltage Vs Time waveform 78
Fig 4.29 waveform of output current of D2 & D4 78
Fig 4.30 active & reactive power waveform 78
Fig 4.31 Simulated diagram of six-switch rectifier 79
Fig 4.32 waveforms of Rectified DC voltage, current-ph1,
Current-ph2, diodes output current

Fig 4.33 Three-phase voltage Vs Time waveform 80
Fig 4.34 Three-phase current Vs Time waveform 80
Fig 4.35 output current Vs Time waveform 81
Fig 4.36 output voltage Vs Time waveform 81
Fig 4.37 Simulated diagram of zigzag TR. Rectifier 82
Fig 4.38 Input voltage Vs Time waveform 83
Fig 4.39 output current Vs Time waveform 83
Fig 4.40 output voltage Vs Time waveform 83

Fig 5.1 Shunt passive filters 87
Fig 5.2 Series passive filters 87
Fig 5.3 Shunt active filters 88
Fig 5.4 Series active filters 88
Fig 5.5 Current Harmonics 89
Fig 5.6 Current waveform 90
Fig 5.7 Voltage waveform 90
Fig 5.8 Voltage Harmonics 91
Fig 5.9 Single Line Diagram of Active Filter 95
Fig 5.10 Block diagram of the system 98
Fig 5.11 Shunt Active Filter 98
Fig 5.12 Shunt Active Filters with Linear Loads 102
Fig 5.13 Active & Reactive power control 103
Fig 5.14 Simulated Diagram of Active Harmonics Filter 107
Fig 5.15 Simulated Diagram for ABC to Alpha, Beta Zero Transformation 108
Fig 5.16 Simulated Diagram for Reference Current Calculation 108
Fig 5.17 Source and Load Current Waveforms 109
Fig 5.18 Source And Load Power Waveforms 109
Fig 5.19 Active Harmonics Filters with Thyristor Bridge Load 110
Fig 5.20 Source and Load Current Waveforms 111
Fig 5.21 Output voltage waveform 111
LIST OF TABLES

Table 2.1 Operational mode of Single Phase Full Wave Bridge Converter 22
Table 3.1 Evaluation of Power factor 54
Table 4.1 D.C voltage rating of components 61
Table 4.2 D.C output voltage rating of normal components 68
Table 4.3 Capacity ratings of elements 69
Table 5.1 Current Harmonic 90
Table 5.2 Voltage Harmonic 91
Table 5.3 Power & Energy 91
Table 5.4 Variation of Parameters 97
Table 5.5 Transformer Primary side 97
Table 5.6 Transformer secondary side 97
Table 5.7 Parameters for Diode Bridge load 105
Table 5.8 Parameters For Thyristor Bridge Rectifier Load 105
Table 5.9 Harmonic Distortion of Load Voltage 112
Table 6.1 Power factor Evaluation 113
Table 6.2 Harmonics Distortion 115