Abbreviations used in this thesis

AABW Antarctic Bottom Water
AMS Accelerator Mass-Spectrometer
ANS Afansiy-Nikitin Seamount
ASC Average Shale Composition
CDW Circumpolar Deep Water
CHUR Chondrite Undifferentiated Reservoir
CIOB Central Indian Ocean Basin
Co-Crust Cobalt enriched ferromanganese crusts
EEIO Eastern EIO
EIO Equatorial Indian Ocean
Fe-Mn crust Ferromanganese encrustation
HCl Hydrochloric Acid
HClO₄ Perchloric Acid
HF Hydrofluoric Acid
HNO₃ Nitric Acid
ICP-OES Inductively Coupled Plasma-Optical Emission Spectrometer
IDW Indian Deep Water
Ma Millions of years before geological Present
Myr Million years
NADW North Atlantic Deep Water
OMZ Oxygen Minimum Zone
PGE Platinum Group of Elements
REE Rare Earth Elements
SD Silicate Detritus
SN Shale Normalized
SRM Standard Reference Material
TIMS Thermal Ionisation Mass-spectrometer
USGS United States Geological Survey
XRD X-ray Diffraction
List of Tables

Table 1 Details of Fe-Mn crust samples used in the present study
Table 2 Major and Minor elements in bulk Fe-Mn crusts
Table 3 Rare Earth Elements in the bulk Fe-Mn crusts
Table 4 Platinum Group Elements in bulk Fe-Mn crusts
Table 5 Nd-Sr isotopic composition in bulk Fe-Mn crusts
Table 6–10 Distribution of major and minor elements with depth in five Fe-Mn crusts studied for paleoceanographic records
Table 11 Correlation-matrix for major, minor, REE, and PGE in bulk Fe-Mn crusts
Table 12 Shale normalized REE in Fe-Mn crusts
Table 13 Correlation matrix for major and minor elements in depth-layers.

List of Figures

Figure 1 Fe-Mn deposits in the Pacific Ocean
Figure 2. Colloidal precipitation model describing formation of Fe-Mn crusts
Figure 3-a. Location of study area (Afanasiy-Nikitin Seamounts)
 -b. Bathymetric contour map of the study area
Figure 4. Depth profiles of basic physico-chemical properties of water in EEIO
Figure 5 & 6. Triangular diagrams indicating genesis of studied Fe-Mn crusts
Figure 7. Mn-Fe relationships in bulk Fe-Mn crusts
Figure 8. Mn-Fe relationships observed through depth of five Fe-Mn crusts
Figure 9. Co relationship with Mn and Fe in studied Fe-Mn crusts
Figure 10. Major element relationship with silicate residue
Figure 11. Shale normalized rare earth element patterns in Fe-Mn crusts
Figure 12. Comparison of ANS Fe-Mn crust REE with other ocean deposits
Figure 13. Depth variation of Ce-anomaly
Figure 14. Chondrite normalized PGE in ANS Fe-Mn crusts
Figure 15. Linear and non-linear relationships of PGE in ANS Fe-Mn crusts
Figure 16. PGE relationships with Co and Ce in ANS Fe-Mn crusts
Figure 17. X-ray diffractograms of silicate-residue fractions
Figure 18. Nd-Sr isotopic composition of ANS Fe-Mn crust silicate residue compared with isotopic composition of potential sources
Figure 19. Physiographic features of the Indian Ocean that play important role in controlling turbidite distribution

Figure 20. Comparison of Co-model ages with 10Be-ages

Figure 21. The relationship between water-depth and maximum ages of Fe-Mn crusts

Figure 22. Growth episodes recorded in five Fe-Mn crusts

Figure 23. Comparison of different growth episodes

Figure 24. Long-term variation of silicate detritus recorded by three Fe-Mn crusts

Figure 25a-d. Long-term variations of oxide-elements recorded by three Fe-Mn crusts

Figure 26. Short-term variation of silicate detritus recorded in two Fe-Mn crusts

Figure 27. Short-term variations of oxide-elements recorded in two Fe-Mn crusts