List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Captions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Principal existing and emerging processes for dye removal</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Adsorption capacities and other parameters for the removal of dyes by various adsorbents.</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Different raw and activated clays as adsorbents for removal of dyes from water</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Characteristics of the XRD bands in kaolinite and acid-treated kaolinite</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Characteristics of the XRD bands in montmorillonite and acid-treated montmorillonite</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Assignment of FTIR bands of kaolinite (K), 0.25 M H₂SO₄ treated kaolinite (K₁), and 0.50 M H₂SO₄ treated kaolinite (K₂)</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>FTIR bands of montmorillonite (Mt), 0.25 M H₂SO₄ montmorillonite (Mt₁) and 0.50 M H₂SO₄ montmorillonite (Mt₂)</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>Surface and pore characteristics of kaolinite and the acid-treated forms.</td>
<td>84</td>
</tr>
<tr>
<td>3.6</td>
<td>Surface and pore characteristics of montmorillonite and the acid-treated forms.</td>
<td>86</td>
</tr>
<tr>
<td>3.7</td>
<td>CEC of raw and acid-treated clay minerals</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Pseudo first order and second order rate coefficients for adsorption of Methylene Blue on clay minerals (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial dye concentration 100 mg L⁻¹; pH 7.5; temperature 303 K, k₁ in min⁻¹ and k₂ in g mg⁻¹min⁻¹)</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>Experimental and computed qₑ from Lagergren and second order plots for adsorption of Methylene Blue on clay minerals (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial dye concentration 100 mg L⁻¹; pH 7.5; temperature 303 K).</td>
<td>100</td>
</tr>
<tr>
<td>4.3</td>
<td>Second order rate coefficients for methylene blue adsorption on a few adsorbents</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Elovich coefficient for adsorption of MB on clays (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial Methylene Blue concentration 100 mg L⁻¹; pH 7.5; temperature 303 K).</td>
<td>103</td>
</tr>
<tr>
<td>4.5</td>
<td>Intraparticle diffusion coefficient for adsorption of Methylene blue on clay minerals (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial dye concentration 100 mg L⁻¹; pH 7.5; temperature 303 K).</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>Liquid film diffusion coefficient for adsorption of Methylene Blue on clays (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial dye concentration 100 mg L⁻¹; pH 7.5; temperature 303 K).</td>
<td>108</td>
</tr>
<tr>
<td>4.7</td>
<td>Lagergren pseudo first order and second order rate coefficient for adsorption of Congo red on clays (kaolinites 2 g L⁻¹, montmorillonites</td>
<td>111</td>
</tr>
</tbody>
</table>
Experimental and computed q_e values from Lagergren and second order plots for adsorption of Congo red on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.4; temperature 303 K).

Second order rate coefficients for Congo Red adsorption on a few adsorbents

Elovich coefficient for adsorption of Congo red (100 mg L$^{-1}$) on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.4; temperature 303 K).

Intraparticle diffusion coefficient for adsorption of Congo red on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.4; temperature 303 K).

Liquid film diffusion coefficient for adsorption of Congo red (100 mg L$^{-1}$) on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.4; temperature 303 K).

Values of first order and second order rate coefficients for adsorption of Rhodamine B on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.9; temperature 303 K).

Experimental and computed q_e values from Lagergren and second order plots for adsorption of Rhodamine B on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.9; temperature 303 K).

Second order rate coefficients for Rhodamine B adsorption on some adsorbents

Elovich coefficient for adsorption of Rhodamine B on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.9; temperature 303 K).

Intraparticle diffusion coefficient for adsorption of Rhodamine B on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.9; temperature 303 K).

Liquid film diffusion rate coefficient for adsorption of Rhodamine B on clays (kaolinites 2 g L$^{-1}$, montmorillonites 0.4 g L$^{-1}$; initial dye concentration 100 mg L$^{-1}$; pH 6.9; temperature 303 K).

First order and second order rate coefficients for adsorption of Brilliant Green on clays (kaolinites 2 g L$^{-1}$, montmorillonites 1.0 g L$^{-1}$; initial dye concentration 50 mg L$^{-1}$ for kaolinites and 100 mg L$^{-1}$ for montmorillonites; pH 5.4; temperature 303 K, k_1 in min$^{-1}$ and k_2 in g mg$^{-1}$min$^{-1}$)

Experimental and computed q_e values from Lagergren and second order plots for adsorption of Brilliant Green on clays (kaolinites 2 g L$^{-1}$, montmorillonites 1.0 g L$^{-1}$; initial dye concentration 50 mg L$^{-1}$ for kaolinites and 100 mg L$^{-1}$ for montmorillonites; pH 5.4; temperature 303 K, k_1 in min$^{-1}$ and k_2 in g mg$^{-1}$min$^{-1}$)
order plots for Brilliant green adsorption (kaolinites 2.0 g L⁻¹, montmorillonites 1.0 g L⁻¹, initial dye concentration 50 mg L⁻¹ for kaolinites and 100 mg L⁻¹ for montmorillonites, pH 5.4, temperature 303 K).

4.21 Some inorganic adsorbents and their second order rate coefficients.

4.22 Elovich coefficient for adsorption of Brilliant Green on clays (kaolinites 2.0 g L⁻¹, montmorillonites 1.0 g L⁻¹, initial dye concentration 50 mg L⁻¹ for kaolinites and 100 mg L⁻¹ for montmorillonites, pH 5.4, temperature 303 K).

4.23 Intraparticle diffusion coefficient for adsorption of Brilliant Green on clays (kaolinites 2.0 g L⁻¹, montmorillonites 1.0 g L⁻¹, initial dye concentration 50 mg L⁻¹ for kaolinites and 100 mg L⁻¹ for montmorillonites, pH 5.4, temperature 303 K).

4.24 Liquid film diffusion coefficient for adsorption of Brilliant Green on clays (kaolinites 2.0 g L⁻¹, montmorillonites 1.0 g L⁻¹, initial dye concentration 50 mg L⁻¹ for kaolinites and 100 mg L⁻¹ for montmorillonites, pH 5.4, temperature 303 K).

4.25 Pseudo first order and second order rate coefficients for adsorption of Crystal violet on clay minerals (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial dye concentration 100 mg L⁻¹; pH 5.9; temperature 303 K, k₁ in min⁻¹ and k₂ in g mg⁻¹ min⁻¹).

4.26 Experimental and computed qₑ from Lagergren and second order plots for adsorption of Crystal violet on clay minerals (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial dye concentration 100 mg L⁻¹; pH 7.5; temperature 303 K).

4.27 Second order rate coefficients for Crystal violet adsorption.

4.28 Elovich coefficient for adsorption of Crystal violet (100 mg L⁻¹) on clays (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial dye concentration 100 mg L⁻¹; pH 5.9; temperature 303 K).

4.29 Intraparticle diffusion rate coefficients for adsorption of Crystal violet on clays (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; dye concentration 100 mg L⁻¹; pH 5.9; temperature 303 K).

4.30 Liquid film diffusion coefficients for adsorption of Crystal violet (100 mg L⁻¹) on clays (kaolinites 2 g L⁻¹, montmorillonites 0.4 g L⁻¹; initial dye concentration 100 mg L⁻¹; pH 5.9; temperature 303 K).

4.31a First and second order rate coefficients for adsorption of Crocein orange G on clays (kaolinites 2 g L⁻¹, montmorillonites 1.0 g L⁻¹; dye concentration 50 mg L⁻¹; pH 6.3; temperature 303 K, k₁ in min⁻¹ and k₂ in g mg⁻¹ min⁻¹).

4.31b Elovich, Intra-particle diffusion and liquid film diffusion rate coefficients for adsorption of Crocein orange G on clays (kaolinites 2 g L⁻¹, montmorillonites 1.0 g L⁻¹; dye concentration 50 mg L⁻¹; pH
First and second order rate coefficients for adsorption of Procion red MX5B on clays (kaolinites 2 g L^{-1}, montmorillonites 1.0 g L^{-1}; dye concentration 50 mg L^{-1}; pH 6.3; temperature 303 K, k_1 in min^{-1} and k_2 in $\text{g mg}^{-1}\text{min}^{-1}$)

Elovich, Intra-particle diffusion and liquid film diffusion rate coefficient for adsorption of Procion red MX5B on clays (kaolinites 2 g L^{-1}, montmorillonites 1.0 g L^{-1}; initial dye concentration 50 mg L^{-1}; pH 6.3; temperature 303 K)

Freundlich, Langmuir and Temkin isotherm parameters for adsorption of Methylene blue from aqueous solution (pH 7.5) on clay minerals at 303 K. [Methylene blue 50 – 350 mg L$^{-1}$ for kaolinite K, K_1, K_2 (2.0 g L$^{-1}$) and 80 – 400 mg L$^{-1}$ for montmorillonite Mt, Mt_1, Mt_2 (0.4 g L$^{-1}$)] K_f in mg$^{1/n}$L$^{1/n}$g$^{-1}$, q_m and b are in mg g$^{-1}$ and L mg$^{-1}$, k_T in L mg$^{-1}$.

Langmuir adsorption capacities (q_m) for Methylene blue adsorption

Isotherm parameters for adsorption of Congo red from aqueous solution (pH 6.4) on clay minerals at 303 K. [Congo red 50 – 350 mg L$^{-1}$ for kaolinite K, K_1, K_2 (2.0 g L$^{-1}$) and 80 – 400 mg L$^{-1}$ for montmorillonite Mt, Mt_1, Mt_2 (0.4 g L$^{-1}$)] K_f in mg$^{1/n}$L$^{1/n}$g$^{-1}$, q_m and b are in mg g$^{-1}$ and L mg$^{-1}$.

Congo red Langmuir adsorption capacity (q_m) of some adsorbents

Isotherm parameters for adsorption of Rhodamine B from aqueous solution (pH 6.9) on clay minerals at 303 K. [Rhodamine B 50 – 350 mg L$^{-1}$ for kaolinite K, K_1, K_2 (2.0 g L$^{-1}$) and 80 – 400 mg L$^{-1}$ for montmorillonite Mt, Mt_1, Mt_2 (0.4 g L$^{-1}$)].

Rhodamine B Langmuir adsorption capacity (q_m) of some adsorbents

Isotherm parameters for adsorption of Brilliant Green from aqueous solution (pH 5.4) on clay minerals at 303 K. [Brilliant Green 10 – 120 mg L$^{-1}$ for kaolinite K, K_1, K_2 (2.0 g L$^{-1}$) and 70 – 300 mg L$^{-1}$ for montmorillonite Mt, Mt_1, Mt_2 (1.0 g L$^{-1}$)] K_f in mg$^{1/n}$L$^{1/n}$g$^{-1}$, q_m and b are in mg g$^{-1}$ and L mg$^{-1}$.

Brilliant Green Langmuir adsorption capacity (q_m) of some adsorbents

Isotherm parameters for adsorption of Crystal violet from aqueous solution (pH 5.9) on clay minerals at 303 K. [Crystal violet 80 – 300 mg L$^{-1}$ for kaolinite K, K_1, K_2 (2.0 g L$^{-1}$) and montmorillonite Mt, Mt_1, Mt_2 (0.4 g L$^{-1}$)] K_f in mg$^{1/n}$L$^{1/n}$g$^{-1}$, q_m and b are in mg g$^{-1}$ and L mg$^{-1}$.

Crystal violet Langmuir adsorption capacity (q_m) of some adsorbents

Isotherm parameters for adsorption of Crocein Orange G (20 – 120 mg L$^{-1}$) from aqueous solution (pH 6.3) on clay minerals at 303 K.
[kaolinite K, K1, K2 (2.0 g L\(^{-1}\)) and montmorillonite Mt, Mtl, Mt2 (1.0 g L\(^{-1}\))].

6.12 Isotherm parameters for adsorption of Procion Red MX5B from aqueous solution (pH 6.2) on clay minerals at 303 K. [Procion Red MX5B 20 – 120 mg L\(^{-1}\) for kaolinite K, K1, K2 (2.0 g L\(^{-1}\)) and 20 – 150 mg L\(^{-1}\) for montmorillonite Mt, Mtl, Mt2 (1.0 g L\(^{-1}\))]. \(k_f\) in mg\(^{1/n}\) L\(^{1/n}\) g\(^{-1}\), \(q_m\) and \(b\) are in mg g\(^{-1}\) and L mg\(^{-1}\), \(k_T\) in L mg\(^{-1}\).

7.1 Thermodynamic data (mean for 10 different dye concentrations) for Methylene Blue adsorption on clays (kaolinites 2 g L\(^{-1}\), dye 50-350 mg L\(^{-1}\) and montmorillonites 0.4 g L\(^{-1}\); dye 80-400 mg L\(^{-1}\); pH 7.5).

7.2 Thermodynamic data (mean for 10 different dye concentrations) for Congo Red adsorption on clays (kaolinites 2 g L\(^{-1}\), dye 50-350 mg L\(^{-1}\) and montmorillonites 0.4 g L\(^{-1}\); dye 80-400 mg L\(^{-1}\); pH 6.4).

7.3 Thermodynamic data (mean for 10 different dye concentrations) for Rhodamine B adsorption on clays (kaolinites 2 g L\(^{-1}\), dye 50-350 mg L\(^{-1}\) and montmorillonites 0.4 g L\(^{-1}\); dye 80-400 mg L\(^{-1}\); pH 6.9).

7.4 Thermodynamic data (mean of values for 8 different dye concentrations) for Brilliant Green adsorption on clays (kaolinites 2 g L\(^{-1}\), dye 10-120 mg L\(^{-1}\) and montmorillonites 1.0 g L\(^{-1}\); dye 70-300 mg L\(^{-1}\); pH 5.4).

7.5 Thermodynamic data (mean for 8 different dye concentrations) for Crystal violet (80 – 300 mg L\(^{-1}\)) adsorption on clays (kaolinites 2 g L\(^{-1}\) and montmorillonites 0.4 g L\(^{-1}\); pH 5.9).

7.6 Thermodynamic data (mean for 6 different dye concentrations) for Crocein Orange G (20 – 120 mg L\(^{-1}\)) adsorption on clays (kaolinites 2 g L\(^{-1}\) and montmorillonites 1.0 g L\(^{-1}\); pH 6.3).

7.7 Thermodynamic data (mean of 6 different dye concentrations) for Procion Red MX5B (20 – 120 mg L\(^{-1}\)) adsorption on clays (kaolinites 2 g L\(^{-1}\) and montmorillonites 1.0 g L\(^{-1}\); pH 6.2).

8.1 Variations in surface area, pore volume, pore diameter and CEC of kaolinite (K), 0.25M acid-treated kaolinite (K1), 0.50 M acid-treated kaolinite (K2), montmorillonite (Mt), 0.25 M acid-treated montmorillonite (Mtl) and 0.50 M acid-treated montmorillonite (Mt2).

8.2 Comparison of Langmuir monolayer adsorption capacities of the clay minerals for all the seven dyes at 303 K. (MB: Methylene Blue. RB: Rhodamine B, CV: Crystal violet, BG: Brilliant Green, CR: Congo red, COG: Crocein Orange G and MX5B: Procion Red MX5B)