CONTENT

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENT</th>
<th>i-ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBREVIATIONS</td>
<td>iii-v</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>1-20</td>
</tr>
</tbody>
</table>

1.1 Biodiversity loss: crisis facing medicinal plants

1.2 Conservation strategies

1.3 Plant tissue culture

1.4 Synseed technology

1.5 *Spilanthes acmella* (L.) Murr.

- **1.5.1 Habit**
- **1.5.2 Habitat**
- **1.5.3 Botanical description**
- **1.5.4 Chemical constituents**
- **1.5.5 Medicinal importance**
 - **1.5.5.1 Traditional uses**
 - **1.5.5.2 Larvicidal and insecticidal activities**
 - **1.5.5.3 Antiobesity activity**
 - **1.5.5.4 Antifungal activity**
 - **1.5.5.5 Transmucosal behavior**
 - **1.5.5.6 Antiaging activity**
 - **1.5.5.7 Antiinflammatory and analgesic activities**
- **1.5.6 Causes of its extinction and need of micropropagation**
- **1.5.7 Work conducted and lacuna for further research**

1.6 *Spilanthes mauritiana* DC.

- **1.6.1 Habit**
- **1.6.2 Habitat**
- **1.6.3 Botanical description**
- **1.6.4 Chemical constituents**
- **1.6.5 Medicinal importance**
 - **1.6.5.1 Traditional uses**
 - **1.6.5.2 Larvicidal and insecticidal activities**
 - **1.6.5.3 Antifungal activity**
- **1.6.6 Causes of its extinction and need of micropropagation**
- **1.6.7 Work conducted and lacuna for further research**
1.7 *Decalepis hamiltonii* Wight and Arn.

1.7.1 Habit
1.7.2 Habitat
1.7.3 Botanical description
1.7.4 Chemical constituents
1.7.5 Medicinal importance
1.7.5.1 Traditional uses
1.7.5.2 Antimicrobial activity
1.7.5.3 Insecticidal activity
1.7.5.4 Other properties
1.7.6 Causes of its extinction and need of micropropagation
1.7.7 Work conducted and lacuna for further research

1.8 Objectives

CHAPTER 2 REVIEW OF LITERATURE

2.1 Organogenesis

2.1.1 Meristem, shoot tip and nodal segment culture
2.1.1.1 Effect of adenine-based cytokinins on shoot regeneration
2.1.1.2 Effect of urea-based cytokinins on shoot regeneration

2.1.2 Leaf culture
2.1.2.1 Effect of adenine-based cytokinins on shoot regeneration
2.1.2.2 Effect of urea-based cytokinins on shoot regeneration

2.1.3 Cotyledon culture
2.1.3.1 Effect of adenine-based cytokinins on shoot regeneration
2.1.3.2 Effect of urea-based cytokinins on shoot regeneration

2.2 Indirect organogenesis

2.3 Other factors influencing regeneration
2.3.1 Effect of different culture media on shoot regeneration
2.3.2 Effect of different carbon sources on shoot regeneration
2.3.3 Effect of different pH on shoot regeneration

2.4 In vitro rooting of microshoots
2.5 Synseed production
2.6 Acclimatization of plantlets
3.1 Plant material and explant source
3.2 Culture media

3.3 Preparation of culture medium
3.3.1 Preparation of stock solutions
3.3.2 Plant growth regulators (PGRs)
3.3.3 Carbon and energy sources
3.3.4 pH adjustment and gelling of the medium
3.3.5 Medium filling

3.4 Sterilization
3.4.1 Sterilization of the medium
3.4.2 Sterilization of glass-ware, DDW and instruments
3.4.3 Sterilization of laminar airflow hood
3.4.4 Sterilization of seeds

3.5 Inoculation of sterilized seeds and germination
3.6 Culture establishment and shoot regeneration
3.7 Sub-culturing and shoot proliferation
3.8 In vitro rooting
3.9 Culture room conditions

3.10 Synseed production
3.10.1 Plant material
3.10.2 Encapsulation matrix
3.10.3 Encapsulation and in vitro germination
3.10.4 Low temperature storage
3.10.5 Direct or ex vitro sowing

3.11 Acclimatization of plantlets

3.12 Physiological study
3.12.1 Chlorophyll (a, b and total) and carotenoids content estimation
3.12.1.1 Procedure
3.12.1.2 Estimation
3.12.2 Net photosynthetic rate \(P_N \) estimation

3.13 Histological study
3.13.1 Fixation and storage
3.13.2 Embedding and sectioning
3.13.3 Staining

3.14 Chemicals and glass-ware used
3.15 Statistical analysis

CHAPTER 4 OBSERVATIONS AND RESULTS

4.1 *Spilanthes acmella*
4.1.1 Seed germination and collection of explants

4.1.2 Nodal segment culture
4.1.2.1 Effect of adenine-based cytokinins on shoot regeneration
4.1.2.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.1.2.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration

4.1.3 Shoot tip culture
4.1.3.1 Effect of adenine-based cytokinins on shoot regeneration
4.1.3.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.1.3.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration
4.1.3.3.1 Effect of cytokinin-auxin combinations on shoot regeneration from TDZ derived tissue
4.1.3.2 Effect of different nutrient strengths on shoot proliferation from stock derived culture
4.1.3.4 Effect of different pH on shoot regeneration
4.1.3.5 Effect of different carbon sources on shoot regeneration
4.1.3.6 Effect of different culture media on shoot regeneration

4.1.4 Leaf culture
4.1.4.1 Effect of adenine-based cytokinins on shoot regeneration
4.1.4.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.1.4.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration
4.1.4.3.1 Effect of cytokinin-auxin combinations on shoot regeneration from TDZ derived tissue
4.1.4.3.2 Effect of different nutrient strengths on shoot proliferation from stock culture
4.1.4.4 Effect of auxin (2,4-D) on callus induction

4.1.5 Cotyledon culture
4.1.5.1 Effect of adenine-based cytokinins on shoot regeneration
4.1.5.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.1.5.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration
4.1.6 Effect of sub-culturing on shoot proliferation
4.1.7 In vitro rooting of microshoots
4.1.8 Acclimatization of plantlets

4.1.9 Synseed production
4.1.9.1 Effect of Na₂-alginate concentration on synseed formation
4.1.9.2 Effect of CaCl₂·2H₂O concentration on synseed formation
4.1.9.3 In vitro plantlet regeneration from synseeds on culture medium
4.1.9.4 In vitro germination of synseeds and naked nodal segments after low temperature storage
4.1.9.5 Acclimatization of plantlets
4.1.9.6 Ex vitro sowing of synseeds on various planting substrates for the recovery of plantlets

4.1.10 Physiological study
4.1.10.1 Chlorophyll a, b and total chlorophyll content during acclimatization
4.1.10.2 Carotenoids content during acclimatization
4.1.10.3 Net photosynthetic rate (P_N) during acclimatization

4.1.11 Histological study

4.2 Spilanthes mauritiana
4.2.1 Seed germination and collection of explants

4.2.2 Nodal segment culture
4.2.2.1 Effect of adenine-based cytokinins on shoot regeneration
4.2.2.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.2.2.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration

4.2.3 Shoot tip culture
4.2.3.1 Effect of adenine-based cytokinins on shoot regeneration
4.2.3.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.2.3.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration
4.2.3.3.1 Effect of cytokinin-auxin combinations on shoot regeneration from TDZ derived tissue
4.2.3.3.2 Effect of different nutrient strengths on shoot proliferation from stock culture
4.2.3.4 Effect of different pH on shoot regeneration
4.2.3.5 Effect of different carbon sources on shoot regeneration
4.2.3.6 Effect of different culture media on shoot regeneration
4.2.4 **Leaf culture**
4.2.4.1 Effect of adenine-based cytokinins on shoot regeneration
4.2.4.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.2.4.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration
4.2.4.3.1 Effect of cytokinin-auxin combinations on shoot regeneration from TDZ derived tissue
4.2.4.3.2 Effect of different nutrient strengths on shoot proliferation from stock culture
4.2.4.4 Effect of auxin (2,4-D) on callus induction

4.2.5 **Cotyledon culture**
4.2.5.1 Effect of adenine-based cytokinins on shoot regeneration
4.2.5.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.2.5.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration

4.2.6 **Effect of sub-culturing on shoot proliferation**
4.2.7 **In vitro rooting of microshoots**
4.2.8 **Acclimatization of plantlets**

4.2.9 **Synseed production**
4.2.9.1 Effect of Na₂-alginate concentration on synseed formation
4.2.9.2 Effect of CaCl₂·2H₂O concentration on synseed formation
4.2.9.3 *In vitro* plantlet regeneration from synseeds on culture medium
4.2.9.4 *In vitro* germination of synseeds and naked nodal segments after low temperature storage
4.2.9.5 Acclimatization of plantlets
4.2.9.6 *Ex vitro* sowing of synseeds on various planting substrates for the recovery of plantlets

4.2.10 **Physiological study**
4.2.10.1 Chlorophyll a, b and total chlorophyll content during acclimatization
4.2.10.2 Carotenoids content during acclimatization
4.2.10.3 Net photosynthetic rate (Pₖ) during acclimatization

4.2.11 **Histological study**

4.3 **Decalepis hamiltonii**
4.3.1 Seed germination and collection of explant

4.3.2 **Nodal segment culture**
4.3.2.1 Effect of adenine-based cytokinins on shoot regeneration
4.3.2.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.3.2.2.1 Effect of growth additives on shoot proliferation and growth
4.3.2.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration
4.3.2.4 Effect of different pH on shoot regeneration
4.3.2.5 Effect of different carbon sources on shoot regeneration
4.3.2.6 Effect of different culture media on shoot regeneration

4.3.3 Shoot tip culture
4.3.3.1 Effect of adenine-based cytokinins on shoot regeneration
4.3.3.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.3.3.2.1 Effect of growth additives on shoot proliferation and growth
4.3.3.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration

4.3.4 Leaf culture
4.3.4.1 Effect of adenine-based cytokinins on shoot regeneration
4.3.4.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.3.4.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration

4.3.5 Cotyledon culture
4.3.5.1 Effect of adenine-based cytokinins on shoot regeneration
4.3.5.2 Effect of cytokinin-auxin combinations on shoot regeneration
4.3.5.3 Effect of urea-based cytokinin (TDZ) on shoot regeneration

4.3.6 Effect of sub-culturing on shoot proliferation

4.3.7 In vitro rooting of microshoots

4.3.8 Acclimatization of plantlets

4.3.9 Synseed production
4.3.9.1 Effect of Na$_2$-alginate concentration on synseed formation
4.3.9.2 Effect of CaCl$_2$·2H$_2$O concentration on synseed formation
4.3.9.3 In vitro plantlet regeneration from synseeds on culture medium
4.3.9.4 In vitro germination of synseeds and naked nodal segments after low temperature storage
4.3.9.5 Acclimatization of plantlets
4.3.9.6 Ex vitro sowing of synseeds on various planting substrates for the recovery of plantlets

4.3.10 Physiological study
4.3.10.1 Chlorophyll a, b and total chlorophyll content during acclimatization
4.3.10.2 Carotenoids content during acclimatization
4.3.10.3 Net photosynthetic rate (P$_N$) during acclimatization
CHAPTER 5 DISCUSSION 116-139

5.1 Seedling establishment
5.2 Direct organogenesis through shoot tip explants and nodal segments
5.3 Direct organogenesis through leaves and cotyledons
5.4 Indirect organogenesis
5.5 In vitro rooting of microshoots
5.6 Acclimatization of plantlets
5.7 Synseeds development and their germination under in vitro and ex vitro conditions
5.8 Physiological study of acclimatized plantlets
5.9 Histological study of morphogenic tissues

CHAPTER 6 SUMMARY AND CONCLUSIONS 140-150

6.1 Spilanthes acmella
6.2 Spilanthes mauritiana
6.3 Decalepis hamiltonii

REFERENCES 151-202