LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Model of the Diffusion Flame Over an Isolated Fuel Droplet</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Droplet Burning in Different Environments</td>
<td>9</td>
</tr>
<tr>
<td>1.3 a</td>
<td>Effect of Droplet Heating on Vaporisation Process</td>
<td>13</td>
</tr>
<tr>
<td>1.3 b</td>
<td>Flame Surface Movement</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>Concentration Boundary Layer Profiles within a Bicomponent Droplet</td>
<td>17</td>
</tr>
<tr>
<td>1.5</td>
<td>Phase Diagram of a Liquid Fuel</td>
<td>18</td>
</tr>
<tr>
<td>2.1</td>
<td>Classical d^2 – law model and its Relaxation</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Subcritical and Supercritical Droplet Vaporisation</td>
<td>51</td>
</tr>
<tr>
<td>5.1</td>
<td>Temperature and concentration profiles for n-heptane in radial direction at time $t/t_d = 0$</td>
<td>92</td>
</tr>
<tr>
<td>5.2</td>
<td>Temperature and concentration profiles at different burning times</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Flame diameter and square of droplet diameter versus time for ethanol droplet burning in standard atmosphere</td>
<td>93</td>
</tr>
<tr>
<td>5.4</td>
<td>Flame to droplet diameter ratio versus time for n-heptane droplet burning in standard atmosphere</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Variation of flame diameter with droplet diameter</td>
<td>95</td>
</tr>
<tr>
<td>5.6</td>
<td>Square of droplet diameter variation with time for n-octane neglecting droplet heating and convection</td>
<td>98</td>
</tr>
<tr>
<td>5.7</td>
<td>Droplet heating with no convection</td>
<td>98</td>
</tr>
<tr>
<td>5.8</td>
<td>Droplet heating with convection</td>
<td>99</td>
</tr>
<tr>
<td>5.9</td>
<td>Mass burning rate versus time for n-octane neglecting droplet heating and convection</td>
<td>99</td>
</tr>
<tr>
<td>5.10</td>
<td>Droplet heating without convection</td>
<td>99</td>
</tr>
</tbody>
</table>
5.11 Droplet heating with convection .. 100
5.12 Emission characteristics of n-heptane droplet ($D_0 = 100$ microns) burning at 1 atmosphere and 298 K .. 102
5.13 Effect of ambient pressure P_∞ on burning constant k_b for n-heptane .. 107
5.14 Ambient pressure effect on droplet lifetime 108
5.15 Mass burning rate .. 108
5.16 F/D ratio .. 109
5.17 Vapour-liquid phase equilibrium compositions predicted by Redlick-Kwong EOS for n-heptane-nitrogen system at ambient pressure of 13.7 bar .. 110
5.18 Vapour-liquid phase equilibrium compositions at sub and supercritical pressures .. 111
5.19 n-heptane vapour mass fraction variation with droplet temperature at different pressures 112
5.20 Vapour-liquid phase equilibrium compositions for O_2/H_2 system at sub and supercritical pressures 113
5.21 Oxygen vapour mass fraction variation with droplet temperature at various pressures 114
5.22 Square of dimensionless droplet diameter versus time for $\text{Re}_g = 100$.. 115
5.23 Vaporisation rate at different times for $\text{Re}_g = 100$ 116
5.24 Effect of ambient temperature T_∞ on adiabatic flame temperature 118
5.25 Burning constant .. 118
5.26 Droplet lifetime .. 119
5.27 Droplet mass burning rate ... 119
5.28 NO concentration variation with dimensionless flame radius at different ambient temperatures for n-heptane 120
5.29 CO_2 concentration .. 121

xi
5.30 CO concentration .. 121
5.31 H₂O concentration .. 121
5.32 Effect of ambient oxidiser concentration Y₀,∞ on flame temperature for n-heptane .. 123
5.33 Effect of ambient oxidiser concentration on burning constant for ethanol .. 123
5.34 Burning constant for n-heptane 124
5.35 Droplet lifetime ... 124
5.36 Mass burning rate .. 124
5.37 Variation of (D/D₀)² with t/D₀² for n-heptane droplet burning in (30 % O₂/ 70 % Helium) atmosphere 125
5.38 Effect of variation of initial droplet diameter D₀ on droplet lifetime at different reduced pressures for n-heptane 127
5.39 Droplet mass burning rate .. 128
5.40 Initial droplet diameter effect on lifetime at different ambient temperatures .. 128
5.41 Droplet mass burning rate .. 128
5.42 Initial droplet diameter effect on lifetime at different ambient oxidiser concentrations .. 129
5.43 Droplet mass burning rate .. 129
5.44 Variation of flame diameter with dimensionless time for different initial droplet size (20 to 5000 microns) 130
5.45 Flame diameter versus dimensionless time for D₀ ranging from 20 to 500 microns 130
5.46 Square of dimensionless droplet diameter versus time 131
5.47 Flame standoff distance variation with time 131
5.48 Effect of fuel properties on the variation of dimensionless flame diameter with dimensionless time 133
5.49 Effect of fuels on F/D ratio behaviour with dimensionless time 133
5.50 Flame standoff distance versus time .. 134
5.51 Dimensionless droplet diameter squared against time 134
5.52 Droplet mass burning rate ... 135
5.53 Variation of CO concentration with dimensionless flame radius for a 100 micron fuel droplet burning in standard atmosphere 137
5.54 CO₂ concentration ... 137
5.55 NO concentration ... 137
5.56 H₂O concentration .. 138
5.57 Variation of liquid heptane mass fraction in heptane-dodecane droplet with dimensionless radius at a particular time 140
5.58 Heptane liquid surface mass fraction variation with dimensionless time ... 141
5.59 Vaporisation of hexane-decane droplet (effect of mixing) 142
5.60 Effect of Lewis number ... 143
5.61 Vaporisation behaviour of heptane-dodecane droplet (comparison of present model with Law and Law model [23]) 145
5.62 Comparison of multicomponent droplet vaporisation models 145