Chapter 3

Fractional Total \(k\)-Domination in Graphs

3.1 Introduction

Meir and Moon [21] introduced the concept of \(k\)-packing set and distance \(k\)-domination in a graph \(G\) as a generalization of 2-packing set and domination. Fink and Jacobson [10, 11] introduced the concept of \(n\)-domination in graphs. In this chapter we investigate the fractional version of total distance \(k\)-domination and fractional total \(k\)-packing.

For any positive integer \(k\), Hattingh et al. [15] introduced the concept of distance \(k\)-dominating function. They defined upper dis-
tance fractional domination number $\Gamma_{kf}(G)$ and studied the computational complexity of $\Gamma_{kf}(G)$. Arumugam et al. [2] introduced the concept of fractional distance k-domination number $\gamma_{kf}(G)$. In this chapter we study the fractional version of total distance k-domination in graphs. We define fractional total distance k-domination number γ^t_{kf} of a graph G and determine the same for several families of graphs. We also obtain sharp bounds for $\gamma^t_{kf}(G)$.

3.2 Fractional Total k-Domination

Definition 3.2.1. Let $G = (V, E)$ be a graph without isolates. A function $f : V \rightarrow [0, 1]$ is called a total k-dominating function (TKDF) of G, if for every $u \in V$, $f(N_k(v)) = \sum_{u \in N_k(v)} f(u) \geq 1$.

The characteristic function χ_s defined by $\chi_s(v) = 1$ when $v \in S$ and 0 otherwise is a total k-dominating function if and only if S is a total k-dominating set.

Definition 3.2.2. A total k-dominating function f of a graph G without isolates is called a minimal total k-dominating function (MTKDF), if any function $g : V \rightarrow [0, 1]$, with $g \leq f$ and
Fractional Total k-Domination in Graphs

$f(v) \neq g(v)$ for at least one $v \in V$, is not a total k-dominating function of G

Definition 3.2.3. The fractional total k-domination number $\gamma_{k_f}^t(G)$ and the upper fractional total k-domination number $\Gamma_{k_f}^t(G)$ are defined as follows:

$$\gamma_{k_f}^t(G) = \min \{|f| : f \text{ is an MTKDF of } G\} \text{ and }$$

$$\Gamma_{k_f}^t(G) = \max \{|f| : f \text{ is an MTKDF of } G\}.$$

Here we assume that $k \leq \text{diam}(G)$.

Remark 3.2.4. The characteristic function of a γ_k^t set and that of a Γ_k^t-set of a graph G are MTKDFs of G. Hence it follows that $1 \leq \gamma_{k_f}^t(G) \leq \gamma_k^t(G) \leq \Gamma_k^t(G) \leq \Gamma_{k_f}^t(G)$.

Observation 3.2.5. Let $G = (V, E)$ be a graph of order n without isolated vertices. Let $V = \{v_1, v_2, v_3, \ldots, v_n\}$. Then the problem of finding the fractional total k-domination number $\gamma_{k_f}^t(G)$ is equivalent to finding the optimal solution of the following linear programming problem.
Minimize \(z = \sum_{i=1}^{n} f(v_i) \)

Subject to \(\sum_{u \in N_k(v)} f(u) \geq 1 \) and
\(0 \leq f(v) \leq 1 \) for all \(v \in V \).

Definition 3.2.6. Let \(G = (V, E) \) be a graph without isolated vertices. A function \(f : V \to [0,1] \) is called a total distance \(k \)-packing function or simply a total \(k \)-packing function of a graph \(G \) if for every \(v \in V, f(N_k(v)) \leq 1 \).

A total \(k \)-packing function \(f \) of a graph \(G \) without isolates is maximal (MTKDF) if \(g \) is not a total \(k \)-packing function of \(G \) for all functions \(g : V \to [0,1] \) with \(g > f \).

Definition 3.2.7. The lower fractional total \(k \)-packing number \(p_{tf}^k(G) \) and the upper total \(k \)-packing number \(p_{tf}^r(G) \) are defined as follows:

\[
p_{tf}^k(G) = \min\{|f| : f \text{ is a MTKPF of } G\} \quad \text{and} \\
p_{tf}^r(G) = \max\{|f| : f \text{ is a MTKPF of } G\}.
\]

Observation 3.2.8. Let \(G = (V, E) \) be a graph of order \(n \) without isolates where \(V = \{v_1, v_2, \ldots, v_n\} \). Then the problem of finding the
fractional total k-packing number $p_{kf}^t(G)$ is equivalent to finding the optimal solution of the following linear programming problem.

Maximize $z = \sum_{i=1}^{n} f(v_i)$

Subject to $\sum_{u \in N_k(v)} f(u) \geq 1$ and

$0 \leq f(v) \leq 1$, for all $v \in V$.

Remark 3.2.9. The Linear Programming Problem given in Observation 3.2.5 and that given in Observation 3.2.8 are duals of each other. Hence it follows from the Strong Duality Theorem that $p_{kf}^t(G) = \gamma_{kf}^t(G)$.

Hence if there exists a minimal total k-dominating function f and a maximal total k-packing function g with $|f| = |g|$, then $p_{kf}^t(G) = |g| = |f| = \gamma_{kf}^t(G)$.

Example 3.2.10. Consider the graph G given in Figure 3.1

Then $D = \{v_1, v_5\}$ is a total 2-dominating set of G. Hence $\gamma_2^t(G) = 2$. We have $N_2(v_1) = \{v_2, v_3, v_7, v_8\}$, $N_2(v_2) = \{v_1, v_3, v_4, v_8\}$, $N_2(v_3) = \{v_1, v_2, v_4, v_5\}$, $N_2(v_4) = \{v_2, v_3, v_5, v_6\}$, $N_2(v_5) = \{v_3, v_4, v_6, v_7\}$, $N_2(v_6) = \{v_4, v_5, v_7, v_8\}$, $N_2(v_7) = \{v_1, v_5, v_6, v_8\}$ and $N_2(v_8) = \{v_1, v_2, v_6, v_7\}$.
Let $g : V(G) \rightarrow [0, 1]$ be the constant function defined by $g(v) = \frac{1}{4}$ for all $v \in V$. Clearly g is a total 2-dominating function of G with $|g| = 2$ and hence $\gamma_{2f}^t(G) \leq 2$. Further g is also total 2-packing function of G and hence $\gamma_{2f}^t(G) = 2$.

The following lemma gives an upper bound for $\gamma_{kf}^t(G)$.

Lemma 3.2.11. For any graph of order n without isolates we have $\gamma_{kf}^t(G) \leq \frac{n}{k+1}$ and the bound is sharp.

Proof. Since $|N_k(u)| \geq k+1$ for all $u \in V$ it follows that the constant function f defined on V by $f(v) = \frac{1}{k+1}$ for all $v \in V$ is a total k-dominating function with $|f| = \frac{n}{k+1}$. Hence $\gamma_{kf}^t(G) \leq \frac{n}{k+1}$.

For sharpness of the bound, consider the graph G consisting of a cycle of length 4 with a path of length 2 attached to every vertex of the cycle. Clearly $n = 12$.

Figure 3.1: A graph with $\gamma_{2t}^f(G) = 2$.

- v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8 are the vertices of the graph.
- The cycle consists of vertices v_1, v_2, v_3, v_4.
- The path consists of vertices v_1, v_2, v_7, v_6, v_5.

- The edges are drawn between adjacent vertices in the cycle and between the cycle and the path.
Figure 3.2: A graph with $\gamma_{2f}(G) = \frac{n}{3}$.

Let f be any total 2-dominating function of G. Then $\sum_{u \in N_2[v_6]} f(u) = f(v_6) + f(v_5) + f(v_1)$.

Hence $f(v_6) + f(v_5) + f(v_1) \geq 1$

Similarly, $f(v_8) + f(v_7) + f(v_2) \geq 1$, $f(v_{10}) + f(v_9) + f(v_3) \geq 1$ and

$f(v_{12}) + f(v_{11}) + f(v_4) \geq 1$.

Hence it follows that

$|f| = \sum_{u \in V} f(u) \geq 4$.

Thus, $\gamma_{2f}(G) \geq 4$. Also $\gamma_{2f}(G) \leq 4$ and hence $\gamma_{2f}(G) = 4 = \frac{n}{k+1}$.
We now proceed to determine fractional total k-domination number for some standard graphs.

Theorem 3.2.12. For the corona $G = C_n \circ K_1$, we have $\gamma_{k_f}(G) = \frac{n}{2k-1}$.

Proof. Let $C_n = (v_1, v_2, \ldots, v_n, v_1)$. Let u_i be the pendant vertex adjacent to v_i. Clearly $|N_k(u_i) \cap V(C_n)| = 2k - 1$ and $N_k(u_i) \subset N_k(v_i)$, for $1 \leq i \leq n$. Hence the function $f : V(G) \to [0, 1]$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x = u_i \\ \frac{1}{2k-1}, & \text{if } x = v_i \end{cases}$$

is a minimal total k-dominating function of G with $|f| = \frac{n}{2k-1}$. Also we have $|N_k(v_i) \cap \{u_i : 1 \leq j \leq n\}| = 2k - 1$ for $1 \leq i \leq n$. Hence the function $g : V \to [0, 1]$ defined by

$$g(x) = \begin{cases} \frac{1}{2k-1}, & \text{if } x = u_i \\ 0 & \text{if } x = v_i \end{cases}$$

is a maximal total k-packing function of G with $|g| = \frac{n}{2k-1}$. Hence from the Strong Duality Theorem, we have $|f| = |g|$. Thus $\gamma_{k_f}(G) = \frac{n}{2k-1}$. □
In the following theorem we determine $\gamma_{kf}^t(G)$ for the friendship graph G. Since diameter of G is 2, we take $k = 2$.

Theorem 3.2.13. For the friendship graph $G = F_n$ with n blocks we have $\gamma_{kf}^t(G) = \frac{2n+1}{2n}$.

Proof. Let $V = \{v_1, v_2, v_3, \ldots, v_{2n}\}$ be the vertices of F_n and let $E(F_n) = \{vv_i : 1 \leq i \leq 2n\} \cup \{v_iv_{i+1} : 1 \leq i \leq 2n - 1, i \text{ is odd}\}$.

Let $f : V \to [0, 1]$ be the constant function f defined by $f(x) = \frac{1}{2n}$ for all $x \in V$. Then $\sum_{u \in N_k(x)} f(u) = 1$, for all $x \in V$.

Hence $\gamma_{kf}^t(F_n) \leq |f| \leq \frac{2n+1}{2n}$. (3.1)

Now, let g be any total 2-dominating function of G. Then $g(N_2(v)) = |g| - g(v)$. Hence $|g| - g(v) \geq 1$. Also $g(N_2(v_i)) = |g| - g(v_i), 1 \leq i \leq 2n$. Hence $|g| - g(v_i) \geq 1, 1 \leq i \leq 2n$. Adding these $(2n + 1)$ inequalities we get

$$(2n + 1)|g| - |g| \geq 2n + 1$$

Hence $|g| \geq \frac{2n+1}{2n}$ and so

$$\gamma_{2f}^t(G) \geq \frac{2n+1}{2n}$$ (3.2)
From (3.1) and (3.2), we get

\[\gamma_{2f}(F_n) = \frac{2n + 1}{2n} \]

\[\square \]

Theorem 3.2.14. For the three dimensional hypercube \(G = Q_3 \) given in Figure 3.3 we have \(\gamma_{2f}(G) = \frac{4}{3} \)

![Figure 3.3: A graph \(G = Q_3 \).](image)

Proof. Let \(V = \{v_1, v_2, v_3, \ldots, v_8\} \) be the vertex set of \(Q_3 \). Let \(f : V \to [0, 1] \) be the constant function defined by \(f(v_i) = \frac{1}{6}, 1 \leq i \leq 8 \).

Then \(\sum_{u \in N_2(v)} f(u) = 1 \) for all \(v \in V \).

\[\therefore \gamma_{k_f}(Q_3) \leq |f| \leq \frac{4}{3} \quad \text{(3.3)} \]

Now, let \(g \) be any total 2-dominating function of \(G \). Then \(g(N_2(v_1)) = g(v_2) + g(v_3) + g(v_4) + g(v_5) + g(v_6) + g(v_8) \geq 1 \).
Hence $|g| - (g(v_1) + g(v_7)) \geq 1$. Similarly considering the inequalities $g(N_2(v_i)) \geq 1$ and adding these eight inequalities we get $8|g| - 2|g| \geq 8$. Hence $6|g| \geq 8$, so that $|g| \geq \frac{4}{3}$

Thus, $\gamma_{t2}^f(G) \geq \frac{4}{3} \quad (3.4)$

From (3.3) and (3.4), we get $\gamma_{t}^r(G) \geq \frac{4}{3}$. \qed

Theorem 3.2.15. For the complete bipartite graph $G = K_{m,n}$, we have $\gamma_{t2}^f(G) \geq \frac{m+n}{m+n-1}$.

Proof. Let X and Y be the bipartition of G. Let $X = \{v_1, v_2, v_3, \ldots, v_m\}$ and $Y = \{u_1, u_2, u_3, \ldots, u_n\}$. Let $f : V \to [0,1]$ be the constant function defined by $f(v) = \frac{1}{m+n-1}$ for all $v \in V$. Then

$$\sum_{u \in N_2(x_i)} f(v) = \frac{m+n-1}{m+n-1} = 1.$$ Similarly $\sum_{v \in N_2(y_i)} f(v) = 1$. Hence f is a total 2-dominating function of G.

Thus $\gamma_{t2}^f(K_{m,n}) \leq |f| = \frac{m+n}{m+n-1}. \quad (3.5)$

Now, let g be any total 2-dominating function of G. Then for any $v \in V(G)$, $\sum_{u \in N_2(v)} g(u) = |g| - g(v)$. Hence $|g| - g(v) \geq 1$ for all $v \in V$.

Adding these \((m+n)\) inequalities, we get \((m+n)|g| - |g| \geq m+n\).

Thus \(|g| \geq \frac{m+n}{m+n-1}.

Hence \(\gamma_{2f}(K_{m,n}) \geq \frac{m+n}{m+n-1}. \tag{3.6}\)

From (3.5) and (3.6), we get \(\gamma_{2f}(K_{m,n}) \geq \frac{m+n}{m+n-1}. \tag*{□}\)

Theorem 3.2.16. If \(G\) is a graph on \(n\) vertices with \(\text{diam}(G) = k\), then \(\gamma_{k_f}(G) = \frac{n}{n-1}.

Proof. Consider the constant function \(f : V \to [0,1]\) defined by \(f(v) = \frac{1}{n-1}\) for all \(v \in G\). Since \(k = \text{diam}(G)\), we have \(N_k(G) = V - v\) for all \(v \in V\). Hence \(\sum_{u \in N_k(v)} f(u) = |f| - \frac{1}{n-1} = 1\).

\[\gamma_{r_f}(G) \leq |f| = n \left(\frac{1}{n-1}\right). \tag{3.7}\]

Now, let \(g\) any total \(k\)-dominating function of \(G\). Let \(v \in V\). Then \(\sum_{u \in N_k(v)} g(u) \geq 1\) and hence \(|g| - g(v) \geq 1\). Adding these \(n\) inequalities, we get \(n|g| - |g| \geq n\), Hence \(|g| \geq \frac{n}{n-1}\).

Thus \(\gamma_{k_f}(G) \geq \frac{n}{n-1}. \tag{3.8}\)

From (3.7) and (3.8), we get \(\gamma_{k_f}(G) \geq \frac{n}{n-1}. \tag*{□}\)
3.3 Convexity of Total k-Domination Functions

Cockayne et al. [7] have studied the concept of convex combinations of dominating functions of a graph. In this section, we investigate convex combinations of total k-dominating functions and minimal total k-dominating function.

We know that a total k-dominating function f of a graph G is minimal if any function g with $g \leq f$ and $f(v) \neq g(v)$ for at least one $v \in V$ is not a total k-dominating function.

Lemma 3.3.1. Let f be a total k-dominating function of a graph $G = (V,E)$. Then f is a minimal total k-dominating function if and only if whenever $f(v) > 0$, there exists $u \in N_k(v)$ such that $f(N_k(v)) = 1$

Proof. Let f be a minimal total k-dominating function of G. Let $v \in V$ and $f(v) > 0$. Suppose $f(N_k(v)) > 1$ for all $u \in N_k(v)$. Let $\epsilon_1 = \min\{f(N_k(u)) - 1 : u \in N_k(u)\}$. Let $\epsilon = \frac{1}{2}\min\{f(v), \epsilon_1\}$. Clearly $\epsilon > 0$
Now, define $g: V \to [0, 1]$ by

$$
g(x) = \begin{cases}
 f(x) - \epsilon & \text{if } x = v \\
 f(x) & \text{otherwise}
\end{cases}
$$

Then $g(N_k(u)) = f(N_k(u)) - \epsilon \geq 1$ for all $u \in N_k(v)$. Also $g(N_k(u)) = f(N_k(u)) \geq 1$ for all $u \notin N_k(v)$. Thus g is a total k-dominating function of G, $g(v) < f(v)$ and $g(x) = f(x)$ for all $x \neq v$. Hence f is not a minimal total k-dominating function, which is a contradiction. Thus there exists $u \in N_k(v)$ such that $f(N_k(u)) = 1$.

Conversely, suppose that for any $v \in V$ with $f(v) > 0$ there exists $u \in N_k(v)$ such that $f(N_k(u)) = 1$. Let $g: V \to [0, 1]$ be any function such that $g \leq f$ and $g(v) < f(v)$ for some $v \in V$. Then $f(v) > 0$. Hence there exists $u \in N_k(v)$ such that $f(N_k(u)) = 1$. Since $g(v) < f(v)$, it follows that $g(N_k(v)) < 1$, so that g is not a total k-dominating function of G. Hence f is a minimal total k-dominating function of G. \hfill \Box

Definition 3.3.2. Let G be a graph and let $A, B \subseteq V$. We say that A totally k-dominates B, if $N_k(v) \cap A \neq \emptyset$ for all $u \in B$ and we write $A \rightarrow_{tk} B$
Definition 3.3.3. Let f be a total k-dominating function of a graph G. The boundary set B_f and the positive set P_f of f are defined by

$$B_f = \{ u \in V(G) : f(N_k(u)) = 1 \} \text{ and } P_f = \{ u \in V(G) : f(u) > 0 \}.$$

The following theorem gives a necessary and sufficient condition for a total k-dominating function f to be minimal.

Theorem 3.3.4. A total k-dominating function f of G is a minimal total k-dominating function if and only if $B_f \rightarrow_{tk} P_f$.

Proof. Let f be a minimal total k-dominating function of G. Let $v \in P_f$ so that $f(v) > 0$. It follows from Lemma 3.3.1 that there exists $u \in N_k(v)$ such that $f(N_k(u)) = 1$. Hence $u \in B_f$ and u totally k-dominates v. Thus $B_f \rightarrow_{tk} P_f$. Conversely, suppose $B_f \rightarrow_{tk} P_f$. Let $v \in V$ and $f(v) > 0$. Then $v \in P_f$. Since $B_f \rightarrow_{tk} P_f$, there exists $u \in B_f$ such that u totally k-dominates v. Hence $u \in N_k(v)$ and $f(N_k(v)) = 1$. Thus if follows from Lemma 3.3.1 that f is a minimal total k-dominating function of G. □
Let f and g be two total k-dominating functions and let $0 < \lambda < 1$. Then $h_\lambda = \lambda f + (1 - \lambda)g$ is called a convex combination of f and g.

It follows from the definition that any convex combination of two total k-dominating functions is again a total k-dominating function of G. However a convex combination of two minimal total k-dominating functions need not be an minimal total k-dominating function, as shown in the following example.

Example 3.3.5. Consider the cycle $G = C_5 = (u_1, u_2, u_3, u_4, u_5, u_1)$. Let $k = 2$.

The function $f : V(G) \to [0, 1]$ defined by

$$f(x) = \begin{cases}
1 & \text{if } x \in \{u_1, u_4\} \\
0 & \text{otherwise}
\end{cases}$$

is a minimal total 2-dominating function of G with $P_f = \{u_1, u_4\}$.
and $B_f = \{u_1, u_4\}$. Also the function $g : V(G) \rightarrow [0, 1]$ defined by

$$g(x) = \begin{cases}
1 & \text{if } x \in \{u_3, u_5\} \\
0 & \text{otherwise}
\end{cases}$$

is a minimal total 2-dominating function of G with $P_g = \{u_3, u_5\}$ and $B_g = \{u_3, u_5\}$.

Now, let $h = \frac{1}{2}f + \frac{1}{2}g$. Then $h(u_1) = h(u_3) = h(u_4) = h(u_5) = \frac{1}{2}$ and $h(u_2) = 0$. Hence $P_h = \{u_1, u_3, u_4, u_5\}$ and $B_h = \emptyset$ which shows that B_h does not 2-dominate P_h. Thus the total 2-dominating function h is not minimal

Theorem 3.3.6. Let f and g be minimal total k-dominating functions of a graph G and let $0 < \lambda < 1$. Then $h_\lambda = \lambda f + (1 - \lambda)g$ is a minimal total k-dominating function of G, if and only if

$$B_f \cap B_g \xrightarrow{tk} P_f \cup P_g.$$

Proof. Suppose h_λ is a minimal total dominating function of G. We claim that $B_{h_\lambda} = B_f \cap B_g$ and $P_{h_\lambda} = P_f \cap P_g$. Let $v \in B_{h_\lambda}$. Then $h_\lambda(N_k(v)) = 1$. Hence $(\lambda f + (1 - \lambda)g)(N_k(v)) = 1$, so that $\lambda f(N_k(v)) + (1 - \lambda)g(N_k(v)) = 1$. Since $f(N_k(v)) \geq 1$ and $g(N_k(v)) \geq 1$, it follows that $f(N_k(v)) = g(N_k(v)) = 1$. Thus $v \in B_f \cap B_g$ and
hence $B_{h\lambda} \subseteq B_f \cap B_g$. Now, let $v \in B_f \cap B_g$. Then $f(N_k(v)) = g(N_k(v)) = 1$. Hence $h_{\lambda}(N_k(v)) = \lambda f(N_k(v)) + (1 - \lambda) g(N_k(v)) = 1$. Thus, $v \in B(h_{\lambda})$ and hence $B_f \cap B_g \subseteq B_{h\lambda}$.

Therefore, $B_{h\lambda} = B_f \cap B_g$.

We now claim that $P_{h\lambda} = P_f \cup P_g$. Let $v \in P_{h\lambda}$. Then $h_{\lambda}(v) = \lambda f(v) + (1 - \lambda) g(v) > 0$. Hence either $f(v) > 0$ or $g(v) > 0$, so that $v \in P_f \cup P_g$. Now if $v \in P_f \cup P_g$, then $f(v) > 0$ or $g(v) > 0$. Hence $h_{\lambda}(v) = \lambda f(v) + (1 - \lambda) g(v) > 0$. Thus $v \in P_{h\lambda}$, so that $P_f \cup P_g \subseteq P_{h\lambda}$.

Now, let $v \in P_{h\lambda}$. Then $h_{\lambda}(v) = \lambda f(v) + (1 - \lambda) g(v) > 0$. Hence $f(v) > 0$ or $g(v) > 0$, so that $v \in P_f \cup P_g$. Therefore, $P_{h\lambda} \subseteq P_f \cup P_g$ and hence $P_{h\lambda} = P_f \cup P_g$. Since h_{λ} is a minimal total k-dominating function of G, it follows from Theorem 3.3.4 that $B_{h\lambda} \rightarrow_{tk} P_{h\lambda}$. Hence $B_f \cap B_g \rightarrow_{tk} P_f \cup P_g$. Since $B_f \subseteq B_f \cap B_g$ and $P_f \subseteq P_f \cup P_g$, it follows that $B_f \rightarrow_{tk} P_f$. Similarly $B_g \rightarrow_{tk} P_g$. Thus f and g are minimal total k-dominating functions of G.

Conversely, let f and g be minimal total k-dominating functions of G. Then $B_f \rightarrow_{tk} P_f$ and $B_g \rightarrow_{tk} P_g$. Hence $B_f \cap B_g \rightarrow_{tk} P_f \cup P_g$, so that $B_{h\lambda} \rightarrow_{tk} P_{h\lambda}$. Thus h_{λ} is a minimal total k-dominating function of G. \square
Observation 3.3.7. The above theorem shows that if f and g are minimal total k-dominating functions of G then either all convex combinations of f and g are minimal total k-dominating function or no convex combination is minimal total k-dominating function of G. We shall use this observation to define and investigate the concept of total k-convexity graph of a graph.

3.4 Conclusion

In this chapter we have determined the fractional total k-domination number of some families of graphs. We have also investigated the minimality of a convex combination of two minimal total k-dominating functions. A study of this parameter for graph products and for other graph operations will be taken up and results in this direction will be reported.