REVIEW OF LITERATURE
Correct diagnosis and management of allergic diseases require thorough knowledge of basic immunologic principles.

Von-Pirquet (1906) coined the term allergy for a state of changed reactivity in a host, occurring as a result of contact with foreign substance or particle. This altered reactivity could either be beneficial to host as in case of immunity or toxic as in anaphylaxis. In recent use allergy refers only to adverse effects.

THE IMMUNE SYSTEM

The immunologic system is the segment of host defenses that includes macrophages, leukocytes, lymphocytes and the complement system. Together with physical barriers such as an intact integument and motile cilia its primary function is to protect against invasion by infection agents. The potential costs of this protection are allergy, autoimmunity and rejection of organ transplants. The immune system arises from developing lymphoid tissue during embryogenesis.

Lymphoid stem cells differentiate into two major types T cells and B cells which have different functions in their proctive roles. T cells are so named because they differentiate in thymus gland whereas B cells mature in bone marrow. In humans B cells are involved in humoral
or antibody mediated immunity and T cells (thymus dependent) involved in cell mediated immunity. Then differentiation in thymus and probably gets stimulated by a humoral factor produced by the thymus epithelium termed as thymopoietin or thymosin (Goldstein et al, 1974).

T cells migrate from the thymus by way of bloodstream and lymphatics to populate the peripheral lymphoid organs i.e. lymphonodes, spleen bone marrow, tonsils and gut associated lymphoid system (Half, 1974).

Pearl (1978) opined that migration of B cells to the peripheral lymphoid organs also occurs.

Pierce and Kapp (1978) postulated that a third lymphoid cell evolving from the central stem cell line during this period is the monocyte or in its mature form macrophages by over the past several years it has been recognized that interaction of macrophage with T and B cells is important in initiation of immune response and its regulation.

Thus the production of immune cell lines following exposure to antigen requires cellular interaction involving both T and B cells and macrophages.

HUMORAL MEDIATORS OF SPECIFIC IMMUNITY

IMMUNOGLOBULINS

Immunoglobulins are the products of differentiated B cells and mediate the humoral arm of the immune response. The primary functions of antibodies are to bind specifically to antigen and bring about the inactivation or removal of offending toxin, microbe, parasite or other foreign
substance from the body.

Antibody activity in humans reside in five major classes of globulins. Those immunoglobulins classes are termed as IgG, IgM, IgA, IgD and IgE. Each immunoglobulin class appears to be synthesized by a separate B cell subclass.

The structural basis of immunoglobulin molecule function and immunoglobulin gene organisation has provided in right into the role of antibodies in normal protective immunity and in pathologic immune mediated damage by immune complexes and auto antibody formation against the host determinants. It has been recognized that for maximal B cell IgM and IgG primary responses to occur to most antigens, the presence of T cells is required (Katz et al, 1972). This population of T cell is known as Helper T cell (Friedman and Greaves, 1973). All immunoglobulins have basic structure of two heavy and two light chains.

There are also few antigens which to not require mediation by T cells. These are called as T independent antigens (Moller, 1973). Along with the interaction of B and T lymphocytes, macrophages also play a vital role. Initially antigenic proteins bind to macrophage before their recognition by T lymphocytes (Basten et al, 1976).

Benacerraf (1978) suggested that macrophages process or degrade the antigen and then the antigen is combined with a product of genes which are linked to the major histocompatibility complex or the species. This gene
product, probably a mucoprotein is termed Ia or immune response associated presumably coded for by a corresponding Ir or immune response gene.

The combination of processed antigen and Ia is then presented to T cell for immune recognition and stimulation of T cell to helper activity or effector activity in its own right, in a cell mediated immune response (Benacerraf, 1978).

In contrast B lymphocytes have readily identifiable IgD and IgM monomer present on their cell membranes (Franklin, 1976, Kunkel, 1974, Seligmann, 1975).

After the B lymphocyte has matured into a plasma cell, these receptors are shed being replaced with a surface bound immunoglobulin of the same class and antigenic specifically as that being secreted by plasma cell (Basten, 1976 and Gershon, 1974).

MECHANISM OF ANTIBODY SYNTHESIS

It is known that following the interaction of macrophages, helper T cell and B cells, the B lymphocytes undergo blastogenesis and are transformed into mature plasma cells, which synthesize specific class immunoglobulin. Many regulatory mechanisms, however, operate over this.

IgM B cells are suppressed by circulating IgG antibody directed against the same antigenic specificity (Sercurs et al, 1974).
There is a growing evidence that suppressor T cells exert a regulatory effect and yet another T cell subpopulation may exist, generating an opposing amplifier signal to which, the mature B cells is subjected (Markham et al, 1977).

Thus, amplifier and suppressor T cells appear to regenerate complementary effects to keep the degree of B cell activity appropriate to antigenic stimulation (Benacerraf, 1978).

Macrophages also exert medulatory influence on B cell biosynthesis mediated by elaboration of so called monokine which enhance antibody formation (Dimitriu and Fauci, 1978).

Population of suppressor T cell regulate IgA and IgE synthesis also. Initiation of a specific IgE response is dependent on interaction between the macrophage, helper T cells, and IgE B cell analogous to the IgG response.

Regulation of IgE production is of special concern to allergist since antibodies of this immunoglobulin class primarily mediate the allergic reaction observed in hay fever, extrinsic bronchial asthma and allied reactions.

IMMUNOGLOBULINS

Immunoglobulins are a heterogenous group of proteins belonging to gammaglobulin fraction of the serum proteins. Their main function is to act as antibodies.
The gammaglobulins were first designed by Tiselins in 1937 as a distinct group of serum proteins having a distinct electrophoretic mobility.

Kunkel and Putnam (1953) showed that myeloma proteins in the serum of patients with multiple myeloma belonged to gammaglobulin fraction of serum proteins.

Graber et al (1953) supported the finding of Heidelberger and also separated the newer IgA besides the IgM and IgG by an immuno-electrophoresis technique.

Porter (1959) was able to clear the immunoglobulins into two fragments, separable by ion exchange chromatography; one fragment retained the capability to react with the immunogen and was called antigen binding fragment or Fab, the other crystallized upon standing and was called crystallizable fragment or Fc.

According to Edelman and Poulak (1961), globulin could be split into two components by reduction with thiols in the presence of urea i.e. the heavy chains (molecular weight 50,000) and light chain (molecular weight 20,000).

Gray and Kunkel (1964) discovered the subclass of IgG viz. IgG₁, IgG₂, IgG₃ and IgG₄.

Rowe and Fahey (1965) discovered the fourth class of immunoglobulins viz. IgD from an atypical myeloma protein.

Kunkel and Prendergest (1966) discovered the subclass of IgA.
IgE

In 1967, Ischizaka et al discovered that reagents or skin sensitizing antibody belonged to a unique class of immunoglobulin which they called IgE and it remained as a principle if not the sole mediator, of type I hypersensitivity reaction.

Johansson et al (1970) found that IgE level varies with age but not with sex. Patients with asthma and atopic dermatitis had raised IgE level more often than patients with allergic rhinitis. Atopic dermatitis had the highest mean IgE level.

Tada (1975) found that 1% of the total IgE was cell bound.

In 1975, Normal suggested that IgE was the principal mediator of immediate (type-I) hypersensitivity reactions.

IgE binds to tissue mast cells and basophils. This cell bound complex then causes degranulation of basophils on combining with antigen (allergen), with the result histamine and other mediators are released. (Beaven, 1976).

Homburger (1978) suggested that IgE concentration was generally higher in the allergic population, although there was some overlapping with non atopies.

Biological properties of IgE class were investigated and presented by Ischizaka et al (1978).
Zeiss (1980) discovered that PC fragment of immunoglobulin was responsible for the protein's ability to fix to receptors on mast cell and basophils.

Leung et al (1985) in his review concluded that T lymphocytes played an important role in the isotype specific regulations of the human IgE response.

CELL MEDIATED IMMUNITY

Parker (1976) concluded that the parallel mechanism of immune recognition and immune regulations were analogous in humoral and cell mediated immunity. However, immune reaction in cell mediated immunity was brought about by sensitized lymphocytes, rather than by free antibody molecule.

The development of antigen specific T lymphocyte is dependent on interaction of macrophage and T cell.

Benner and Van Cuden aren et al (1977) showed that memory T cells were long lived and maintained immunologic memory of previously encountered antigens.

Kapp et al (1978) postulated that suppressor T cells were responsible for establishing tolerance to self antigens.

Effector T cells, on contacting with antigen created the molecular, cellular and clinical manifestation of cell mediated immunity reaction (Binz, 1978).
CLASSIFICATION OF HYPERSENSITIVITY REACTION

Gell and Coomb (1963) classified the immune response into four types i.e. type I to IV hypersensitivity reactions, of which type I is known as anaphylactic or reagin dependent. Several modifications however have been proposed to the Gell and Coomb classification system (Sell, 1975).

Raitt (1975) added fifth category of immune response i.e. stimulating antibody reaction and Irvine (1984) described the sixth i.e. antibody dependent cell mediated cytotoxicity (ADCC).

TYPE-I (ANAPHYLACTIC REACTION)

This type of reaction is also called immediate type hypersensitivity or reaginic hypersensitivity and is caused by reaginic antibody of the IgE class (IgE in a few cases) e.g. extrinsic bronchial asthma, allergic rhinitis, partly atopic dermatitis, most cases of anaphylactic shock, some cases of urticaria and angio-edema (Lakin and Cahill, 1976).

Antigens which cause type I reaction are called allergens. When the allergen reacts with IgE attached to the surface of the mast cells, the cell degranulates and liberates chemical mediators, responsible for symptoms.

Main chemical mediator is histamine and others are SRS-A (Leukotriene C_4+D_4+E_4), leukotrine B_4 ECF-A (Eosinophil chemotactic factor of anaphylaxis), platelet activating factor (PAF), TXA_2 , a high molecular neutrophil
chemotactic factor (MCF) and prostaglandin D₂ (Matho et al 1977).

In 1978, Lichtenstein concluded that these chemical mediators were responsible for vasodilation, increased capillary permeability, and smooth muscles contraction, which were manifested clinically as urticaria angio-edema, hypotension, bronchospasm, spasm of gastrointestinal musculature, or uterine contractions, depending on the location and severity of the reaction.

In contrast to other cell types, mast cell and basophils have high affinity receptors for IgE, these are about 10^5 per cell.

TYPE-II (CYTOTOXIC REACTION)

This reaction is also termed as complement dependent cytotoxicity. Complement system also mediates type III or toxic complex reactions.

TYPE-III (TOXIC COMPLEX REACTION OR IMMUNE COMPLEX REACTION)

In this reaction, complexes are formed between circulating antigen and specific antibody, especially of IgE class. In this reaction complement system is also activated, causing local infiltration by neutrophils, which in turn release tissue damaging enzymes.

Dixon (1965) concluded that arthus reaction experimental and clinical serum sickness, few glomerulonephritis and some drug reactions, followed by mechanism of type III reaction.
Fink and Salvaggio (1978) thought that type III reaction played a significant role in the pathogenesis of various hypersensitivity pneumonias.

TYPE-IV (CELLULAR HYPERSENSITIVITY REACTION)

This is also called delayed hypersensitivity reaction, as a delay of 24 to 72 hours occurs in the initiation of reaction and is mediated by antigen specific sensitized T lymphocytes. Sensitized T lymphocytes also act by liberating lymphokines, which mobilize non sensitized cells to fight the antigen.

David et al (1964) observed as little as 2.5% antigen specific T lymphocytes to the total cell population, in the delayed reaction.

TYPE-V (STIMULATING ANTIBODY REACTION)

This reaction was considered as a modification of the type II reaction, by Raitt (1972) in that the specific antibody combines with antigen on the cell surface but complement was not activated.

The classical example of this reaction is in Graves' disease (Exophthalmic Goitre) in which excess amounts of thyroid hormones are produced.

TYPE-VI (ANTIBODY DEPENDENT CELL MEDIATED CYTOTOXICITY) (ADCC)

K cell mediated cytotoxic mechanisms may be important in the pathogenesis of autoimmune disease and in tumour rejection. K cells were also involved in the defense
against helminthic infections such as schistosomiasis where the size of the parasite is too large for effective phagocytosis.

DIAGNOSIS OF ALLERGY AND HYPERSENSITIVITY

It was earlier believed that allergy was the cause of almost all cases of asthma, rhinitis and dermatitis. When an allergen could not be identified bacterium, food or yet unidentified substance was incriminated. However, it has been realized that increased non-specific responsiveness of the diseased organ, hyperreactivity, is of considerable importance (Cockcroft, 1983).

For the diagnosis of allergy and hyper-reactivity, following points are considered (Mygind Niels, 1986).

1. History
2. Physical examination
3. Exercise test
4. Histamine test
5. Blood eosinophil count
6. Total serum IgE
7. Skin testing with appropriate allergen
8. RAST

In 1921, Prausnitz and Kustner for the first time demonstrated transfer of immediate hypersensitivity from an affected individual to a normal individual through serum.

Atopy and atopic refer to certain allergic diseases which have a familial tendency to occur and are associated with eosinophilia of blood and tissue secretions (Coca, 1923).
In 1923, Coca and Grove did extensive studies of skin sensitizing factors from the sera of the patients with ragweed hay fever.

The cutaneous reactivity of infants and neonates is reduced (Sulzberger et al, 1940, Matheson et al, 1954 and Kaufman, 1971).

Herzheime et al (1954) studied and evaluated the role of skin test in respiratory allergy.

Chambers et al (1958) showed that asymptomatic subjects, who are skin test positive (ragweed poovenosis) are at a higher risk of developing an allergic syndrome if less than the 40 years of age, as compared to subjects who are skin test negative.

Curren and Goldman (1961) found 50% of the non-allergic individuals with a positive family history of atopy and positive skin tests to aeroallergens, compared to only 9% of subjects with a negative family history.

In 1965 Reinberg et al demonstrated that skin reactivity to histamine and to compound 48/80 was maximal between 7 to 11 PM and was at its nadir at 7 AM.

Morrow Brown et al (1968) studied the role of mites in house dust, by skin testing. They found that dermatophagasoides, pteronyssinus played an important role in sensitizing susceptible people. Hence the use of mite extract was considered to be an important advance in the diagnosis of allergy to house dust. They also found in their study that in 50% cases, there was no history to suggest house dust sensitivity,
especially in children, but nasal provocation tests were all positive.

Morrison Smith et al (1969) in their study "Clinical significance of skin reactions to mite extract in children with asthma" found that more than 50% of school children in Birmingham suffering from asthma showed positive prick test reactions to house dust, but these reactions were small and relatively less frequent than prick test reactions to gross pollen in children with pollen allergy. Though positive reactions to D. pteronyssinus were obtained more frequently and were of greater size than those from other extracts, it was considered that D. farinae was a suitable substitute for D. pteronyssinus for skin testing.

Hagy and Sethipane (1969) in their study showed that skin test reactivity in the range of 20 to 49% was present in the general population.

Louse and Lubs (1971) concluded that allergic diseases had both environmental and hereditary factors operating but environmental factors were predominant. This was shown by low concordance in the monozygotic twin group (25.3%) and in the dizygotic group (16.1%).

Study of Lal et al (1973) showed that there was a high incidence of positive skin reactions to extracts of both mites and house dust in individuals with extrinsic bronchial asthma. These reactions showed a significant correlation with the clinical history of house dust,
allergy and bronchial asthma. The presence of mites in 19 out of 25 samples analysed and positive skin test clearly suggested that the house dust mite of dermatophagoites species was present in this part of the world and was playing a significant role in the etiopathogenesis of bronchial asthma.

Gleich et al (1974) noted the highest allergen specific IgE levels between 12 and 20 years of age.

Hendrick et al (1975) had reported decreased prevalence of skin reactivity with age. Peak skin test reactivity has previously been reported to be the highest in 15 to 30 years old age group (Pearson, 1987).

Barbee et al (1976) believed that sensitivity of skin tests was decreased in the elderly.

Godfrey et al (1976) evaluated the prevalence of immediate positive skin test to D. pteronyssinum and grass pollen in school children. The range of prevalence for positive skin tests in allergic population was 50 to 95%.

Lee et al (1977) confirmed the observations to skin test response to grass and house dust extracts. They suggested that false negative readings could result if skin tests were performed in the early morning office hours.

Cavanaugh et al (1977) evaluated the clinical values of bronchial provocation testing in childhood asthma.

Skin test reactivity was positively correlated with total IgE and specific IgE levels (Pascale and Reddy et al, 1977).
In 1978, Reddy et al made a re-appraisal of intercutaneous tests in the diagnosis of reaginic allergy. Skin test reactivity to an allergen was also highly correlated to both basophil sensitivity and tissue (bronchial nasal) sensitivity to that allergen (Cockcroft et al, 1979).

Brown et al (1979) studied the relationship of skin test reactivity and serum IgE in cases of respiratory allergy.

Skin tests were used to diagnose allergic disorders in infancy (Rusinco et al, 1979 and Warner, 1980).

Backer et al (1993) studied the relationship between bronchial responsiveness and the results of skin prick test.

Prick tests are totally harmless in infancy and the reproducibility may be improved by the use of the recently standardized devices (Nelson, 1983).

The skin prick test is more sensitive than the scratch test. Intradermal skin testing is higher in sensitivity but less specific than epicutaneous skin test. Thus, a greater number of false positive reactions can occur in intradermal skin testing. In circumstances where intradermal tests may be dangerous (certain foods and drug allergies), skin prick testing is particularly useful as the initial form of allergy testing (Krouse et al, 1980, Brown et al, 1981, Robert et al, 1983).
Ellis (1983) defined the role of complement in atopic diseases.

According to position, statement of the practice Standards Committee (1983), the skin tests appear to be superior to currently available RASTS in the diagnosis of certain life threatening anaphylactic states in which maximum sensitivity is important, particularly in the diagnosis of penicillin and Hymenoptera allergy. The results of skin tests are more immediately available. Where both tests can be initiated at the time of the patient's visit. The result of skin tests are available in about 45 minutes, those of RASTS are available in 2 to 3 days. RAST is preferable to skin testing in certain conditions where skin testing is unsatisfactory, particularly where there is dermatographia of widespread skin disease.

Allen D. Adinoff et al (1983) observed that skin testing was standard clinical method for demonstrating the presence of allergen specific IgE antibody in allergic diseases.

According to Anderson (1984) non-immunologic mechanisms also played a role in the pathogenesis of atopic disease.

There was a good correlation between IgE, RAST test, RAST and skin testing (Tsay et al, 1984; Mirone et al, 1987 and Kam et al, 1994).
According to Menardo et al (1985) skin test reactivity to histamine and mast cell degranulating agents was lower in newborn infants as compared to adult.

Skin tests represented a major tool in the diagnosis of immediate type allergy (Skassa-Brocick, et al, 1985).

Diminished end organ responsiveness in infants and elderly individuals to inflammatory mediators appear to be one contributory mechanism for decreased prevalence of allergen skin test reactivity at extremes of age (Van Asperen et al, 1985).

Jean Luc Menardo et al (1985) studied and confirmed that prick tests could be performed and interpreted without difficulty in infants, keeping in mind that small wheal size was produced by both positive control solutions and allergens.

Rosario Scolozzi et al (1987) believed that presently non in-vitro technique was as sensitive as skin test for allergen specific diagnosis of inhalant allergic disease.

Nalebuff et al (1989) suggested that skin test was more sensitive, faster and relatively less expensive in comparison to RAST.

Pakit Vichyanond et al (1989) observed in their study, that there was no difference in wheal and erythema sizes between morning versus evening skin testing.
Hattevig et al (1989) noted a decreased incidence and severity of atopic dermatitis in first 6 months of life, if the lactating mothers avoided eggs, cow's milk and fish during the first 3 months of breast feeding.

Yazkio et al (1994) developed a new test 'ALATOP TEST' a new in vitro screening test for atopy and compared the results with that of skin prick test. They found that Alatop Test was 72.5% accurate and skin prick test's accuracy was 80%.

De Lacourt et al (1994) found that skin test positivity to Inhalant allergens was significantly associated with the diagnosis of infantile asthma and could be considered to be predictive of the development of infantile asthma.

CLINICAL SPECTRUM OF DISEASES

Eosinophilia and Allergy

Eosinophil leucocyte is characterized by the presence of large coarse cytoplasmic granules of prominent red colour (Romanowsky staining method) and by a nucleus which has one or two segments.

Apart from phagocytic and cytotoxic activity eosinophils are attracted to the site of immediate hypersensitivity reaction and has the unique potential to modify and regulate the reaction.

Eosinophils normally account for fewer than 5% of circulating leukocytes. Eosinophils counts more than 5% in peripheral smear or 25% cells per cmm is considered elevated. Blood eosinophils in the allergic disorder
does not exceed 15-20% but may occasionally be high as 33% in allergic conditions.

In asthma eosinophils play dual part in protecting the patient from the effects of mast cell vaso-active mediators and simultaneously damaging the bronchial mucosa.

Bray and Smith (1931) found that eosinophilia was predominantly associated with allergic disorders.

Eosinophilia was reported in majority of cases of bronchial asthma by Lowell et al (1967).

Sehgal et al (1973) in a study of 158 patients with urticaria and angioedema reported eosinophil count of more than 10% in 26.6% cases.

Gupta et al (1975) observed eosinophilia irrespective of the type of asthma in their study.

Agrawal et al (1979) also reported significantly high absolute eosinophil count (917.71±618.9) in cases of bronchial asthma, compared to controls (231.4±105.4).

Lukza et al (1982) on the other hand found eosinophilia in cases of acute asthma and eosinophilia in cases of chronic and stable asthma.

Eosinophilia in varying degree, 10 to 40% was also reported by Acharya (1983) in their study of childhood asthma.

Roorda et al (1993) studied the skin reactivity and eosinophil count in relation to the outcome of childhood asthma.
In addition to atopic illnesses and parasitic infections many infections, inflammatory, neoplastic and even immunodeficiency problems are associated with profound alteration in circulating eosinophils, thus limiting the diagnostic significance of eosinophilia.

PARASITES AND ALLERGY

Jarrett (1972) has suggested that potentiation as a result of parasitic infestation, could increase the severity of an individual's allergy by elevating specific IgE level to undesired allergens, such as ragweed pollen etc.

Pasricha (1972) undertook the study to ascertain how far gastrointestinal parasites were responsible for producing urticaria. Incidence of parasites in urticaria was not different from that in other dermatological disease (61.5% and 72% respectively). Twenty five patients of urticaria harbouring gastrointestinal parasites were treated but only in two patients was the elimination of E. histolytica associated with a significant decrease in the intensity of urticaria.

Habte Gabr et al (1976) in their preliminary study showed an important association between chronic urticaria and intestinal parasites. Urticaria in 11 out of 14 cases had direct relationship to intestinal parasites, particularly Ascaris and was cured when the specific parasites were eliminated with anti-helminthic drugs.

Pasricha et al (1979) again surveyed the causes of urticaria and found only 7(1.4%) cases in whom
elimination of parasites had resulted in relief from urticaria. Their studies however, did not account for urticaria caused by allergy to Larva of Ascaris and Hook worm as they traversed tissues before reaching gastrointestinal tract. Such cases of urticaria were likely to be of short duration as once larvae reached gastrointestinal tract and matured, the antigenic stimulation would disappear, as opined by authors.

Veronesi et al (1982) established a relationship between intestinal giardiasis and urticaria. They found in their study of 50 patients of chronic urticaria, giardia in stool and all of them improved with metronidazole, which was more than coincidental.

Hamrick et al (1983) also reported cases of urticaria caused by giardial infestation. They reported that urticaria could occur after massive absorption of antigen following the death of parasites.

Twarog (1983) opined that parasitic infestations should be considered in individuals having urticaria specially in those who came from an endemic area, had peripheral eosinophilia and who had elevated IgE.

BRONCHIAL ASTHMA

Asthma represents most serious but common allergic conditions of childhood. The term asthma is derived from Greek word meaning "Struggling for breath". There is no universally accepted definition of asthma.

Bruce (1958) observed that nearly 50% patients
of asthma had family history of allergy.

In 1964, Vishwanath defined that bronchial asthma is a syndrome that is characterized by attack of expiratory dyspnoea, not attributable to disease of the heart or the lung. The smooth muscle in the bronchi and bronchiles exhibits spasm, edema and exudation following exercise, natural exposure to strong odour, irritant, fumes,tobacco, smoke, cold air, intensional exposure to parasympathethmimetic agents.

Bronchial asthma may be regarded as diffuse obstructive lung disease with hyper-reactivity of the airways to variety of stimuli and high degree of reversibility of obstructive process which may occur either spontaneously or as a result of treatment.

Eosinophilia was reported in majority of cases of bronchial asthma by Lowell et al (1967) and Sharma et al (1974).

Samter and Beers (1968) described a special category of non-antigenic asthma, which was induced by the ingestion of aspirin. Skin test to aspirin was always negative in these patients.

Szentivanyi's theory (1968) considered asthma to be due to abnormal beta adrenergic receptor, adenylate cyclase function with decreased adrenergic responsiveness.

William and Mecnicol (1969) in their study found that 3.7% population had regular episodes of asthma from early childhood to 10 years of age. In adult the incidence
of asthma was 1% of population approximately.

Berg et al (1969) observed high serum IgE level in 90% cases of perennial asthma and 50% cases of seasonal asthma.

Gleich et al (1970) also observed high serum IgE level in allergic asthma.

Jarrett (1972) suggested that potentiation as a result of parasitic infestation, could increase the severity of an individual's allergy by elevating specific IgE level to undesired allergens, such as ragweed pollen etc.

In 1973, Robinson suggested that the asthmatic paraxysm is triggered by the hypersensitivity reaction or by mental stress. Allergy was always a basic factor of an asthmatic paraxysm.

William and Micol (1973) observed that 90-95% of asthmatic children had atopic constitution to develop type I hypersensitivity demonstrated by skin prick testing by various allergens.

In 1973, Jarrett showed in his study that some allergic children gave positive skin test for thread worm antigen and so the author suggested that hypersensitivity to E. vermicularis allergen absorbed from the bowel might contributes to the allergic signs and symptoms. There was no effect of treatment.

Parker and Smith (1973) thought that the decreased beta adrenergic receptor on leukocyte, of non adrenergic drug treated asthmatic may provide the morphological basis
for the observed hyper-responsiveness to beta agonist.

Alternatively increased cholinergic activity in
the airways had been proposed as fundamental defect in
asthma, perhaps due to some intrinsic or acquired abnorma-
ility in irritant receptors which seem in asthmatics to have
lower threshold for response to stimulation (Nadel, 1977).

Gupta et al (1975) observed eosinophilia
irrespective of the type of asthma in their study.

Lee and associates (1976) observed that about
11% of population have asthma by 3 years of age.

Agrawal et al (1979) reported significantly
high absolute eosinophil count (.917.71±618.9) in cases
of bronchial asthma compared to control (231.4±105.4).

A role of viral infections in the allergic sensi-
tization process has been postulated by Frick, German and
Mills (1979) who studied 13 children with 2 allergic
parents, 11 developed clinical allergy and five developed
asthma after an attack of respiratory viral infection.

Eosinophil in intestinal parasitic infestation
not only involved quantitative change in eosinophil
numbers but also a qualitative change in functional
capacity that rendered circulating eosinophils more
efficient in resisting parasitic infestation. Davit et
al (1980) proved this by showing increased capacity of
eosinophils to kill schistsoma mansoni larva in vitro.

Sims et al (1981) observed that about 5% of
children suffered from frequent wheezy episodes at some
time in their childhood and incidence increased to 20% if children having less than 6 attacks of wheezing were included. It was also observed that about half of the children presenting with asthma were atopic and associated with common minor immunodeficiencies. This disease started at any age, about 80 to 90% of asthmatic children had their first attack before the age of 5 years.

Lukza et al (1982) found eosinopenia in case of acute asthma and eosinophilia in cases of chronic and stable asthma.

Eosinophilia in varying degree, 30 to 40% was also reported by Acharya (1963) in his study of childhood asthma.

Prior to puberty about twice as many boys as girls were affected, thereafter the incidence of sex was equal (Ellis, 1983).

Raihi et al (1990) showed agreement between a history of asthma with allergy to house dust and bronchial challenge to whole house dust. All allergic patients had significant bronchoconstriction, whereas no reaction could be elicited in the non allergic group.

ALLERGIC RHINITIS

Seasonal allergic rhinitis is a symptom complex seen in children who have become sensitised to wind borne pollen of trees, grasses and weeds. It is characterised by watery rhinorrhea, nasal congestion, sneezing and itching of eyes, nose and throat.
Connell (1969) defined that there may occur inflammation following the acute phase reaction due to hyper-reactivity of allergic nose to a variety of non-specific stimuli such as cigarette smoke, strong odours, air pollution and climate changes.

Phillips has shown that an individual requires two more seasons of exposure before exhibiting clinical manifestation of disease.

Cell bound IgE antibodies in response to antigenic stimulation, cause release of mediators, immune reaction and bring about manifestations of the disease (Kaliner et al, 1973).

Incidence of allergic rhinitis was reported to be 10% in general population by Viner and Jackman (1976).

Peripheral blood eosinophils of 4-8% may or may not be present in active allergic rhinitis, but characteristic eosinophils of the nasal secretions obtained during the period of symptoms may be of diagnosis value (Tonnenbaum et al, 1980).

From 3-10% patients of allergic rhinitis could develop asthma or other atopic disease (Ellis, 1983).

According to Michael Kaliner (1987) skin testing with potent antigenic preparations and positive and negative control substances remains the most revealing procedure in diagnosing specific allergic factors associated with allergic rhinitis.
URTICARIA

It consists of raised erythematous skin lesions, which are marked by pruritis.

Angioedema is characterised by asymmetrical swelling of tissue. This is like urticaria but involves deeper tissue. Urticaria and angioedema may occur together.

Triple response observed by Lewis (1927) consist of erythema due to capillary and vascular dilatation, edema due to increased capillary permeability and flare due to axon reflex. Intercutaneous injection of histamine inflicts similar type of response along with prurits implicating that histamine mediates the urticarial response.

Temperature changes induce urticaria with considerable frequency. Idiopathic acquired cold urticaria is probably the most common example of this (Anderson, 1967).

Pasricha (1972) undertook the study to ascertain how far gastrointestinal parasites were responsible for producing urticaria.

. Mathews (1974) concluded that nearly 20% population at some time in life suffer from some form of urticaria.

Acute urticaria persists less than 6 weeks while episodes which last more than 6-8 weeks are referred as chronic urticaria. Pathogenesis is mediated by histamine release.

Habte Gabre et al (1976) in their preliminary study showed an important association between chronic urticaria and intestinal parasites.
In urticaria pigmentosa, wheals occur in areas of trauma to the cutaneous benign mast cells tumours which characterised this disease. These pigmented macules or papules are seen most often in childhood, and the diagnosis is confirmed, if rubbing the lesions which produce urticaria (Darier's sign).

FOOD ALLERGY

Dees (1959) reported incidence of food allergy in children as 3%.

Fries (1959) after his study concluded that incidence of food allergy decreased with the advancing age.

According to Golbert (1969) food allergy cause a variety of cutaneous, gastrointestinal and respiratory manifestations, urticaria and angioedema are the most common.

The clinical manifestation of food allergy usually result from type I hypersensitivity (Golbert, 1970).

Chua et al (1976) have shown that positive cutaneous tests neither establish nor confirm a definite diagnosis of clinically significant food allergy.

May (1976) has also similar opinion.

Both Chua et al (1976) and May (1976) demonstrated presence of reaginic antibodies in patients who had negative prick test.