LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Schematic of FRP Composites</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Glass Fibre Woven Roving</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Tensile Coupon Specimen</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Raw Materials used in this Study</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Specimens Before and After Testing</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Experimental set up- Uniaxial Compression Testing</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of Splitting Tensile Strength</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>Axial Stress versus Axial Strain</td>
<td>39</td>
</tr>
<tr>
<td>3.9</td>
<td>Trend Analysis- Strengthening Ratio versus Confinement Ratio</td>
<td>41</td>
</tr>
<tr>
<td>3.10</td>
<td>Comparison of Ultimate Strength – Experimental versus Predicted</td>
<td>42</td>
</tr>
<tr>
<td>3.11</td>
<td>Trend Analysis- Normalised Ultimate Strain versus Confinement Ratio</td>
<td>43</td>
</tr>
<tr>
<td>3.12</td>
<td>Failure Mode of GFRP Confined Concrete</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Details of Test Specimens</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Corner Radius Provided in the Specimens</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Schematic Diagram Showing Test set up</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Typical Lateral Reversed Cyclic Loading History</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Steel Pellets Welded to Longitudinal Bars to Measure Strain in Steel</td>
<td>57</td>
</tr>
<tr>
<td>4.6</td>
<td>Retrofit of Specimen S4</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>Repair of Damaged Specimen R1</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>FRP Jacket Applied to Specimen R1</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>Crack Pattern of Control Specimen C1</td>
<td>60</td>
</tr>
<tr>
<td>4.10</td>
<td>Deflection of Specimen S4</td>
<td>62</td>
</tr>
</tbody>
</table>
4.11 Rupture of GFRP Jacket in Specimen S2 63
4.12 Rupture of GFRP Jacket in Specimen R2 64
4.13 Rupture of GFRP Jacket in Specimen S5 64
4.14 Behaviour of Test Specimen 65
4.15 P-Δ and M-Φ Curves for Specimen C1 66
4.16 P-Δ and M-Φ Curves for Specimen C2 66
4.17 P-Δ and M-Φ Curves for Specimen C3 67
4.18 P-Δ and M-Φ Curves for Specimen D1 67
4.19 P-Δ and M-Φ Curves for Specimen D2 68
4.20 P-Δ and M-Φ Curves for Specimen S1 68
4.21 P-Δ and M-Φ Curves for Specimen S2 69
4.22 P-Δ and M-Φ Curves for Specimen S3 69
4.23 P-Δ and M-Φ Curves for Specimen S4 70
4.24 P-Δ and M-Φ Curves for Specimen S5 70
4.25 P-Δ and M-Φ Curves for Specimen S6 70
4.26 P-Δ and M-Φ Curves for Specimen S7 71
4.27 P-Δ and M-Φ Curves for Specimen S8 71
4.28 P-Δ and M-Φ Curves for Specimen S9 71
4.29 P-Δ and M-Φ Curves for Specimen R1 72
4.30 P-Δ and M-Φ Curves for Specimen R2 72
4.31 P-Δ and M-Φ Curves for Specimen R3 72
4.32 P-Δ and M-Φ Curves for Specimen R4 73
4.33 P-Δ and M-Φ Curves for Specimen R5 73
4.34 P-Δ and M-Φ Curves for Specimen R6 73
4.35 P-Δ and M-Φ Curves for Specimen R7 74
4.36 P-Δ and M-Φ Curves for Specimen R8 74
4.37a Member Ductility Parameters 75
4.37b Section Ductility Parameters 76
4.38 Comparison of Displacement Ductility Factor for Specimens C1, S1 and S4 80
4.39 Comparison of Curvature Ductility Factor for 80

xix
Specimens C1, S1 and S4

4.40 Comparison of Energy Indicator for Specimens C1, S1 and S4 81

4.41 Comparison of Displacement Ductility Factor for Specimens C2, S2, S5 and S6 82

4.42 Comparison of Curvature Ductility Factor for Specimens C2, S2, S5 and S6 82

4.43 Comparison of Energy Indicator for Specimens C2, S2, S5 and S6 82

4.44 Comparison of Displacement Ductility Factor for Specimens C3 and S3 83

4.45 Comparison of Curvature Ductility Factor for Specimens C3 and S3 84

4.46 Comparison of Energy Indicator for Specimens C3 and S3 84

4.47 Comparison of Displacement Ductility Factor for Specimens C1, C2 and C3 85

4.48 Comparison of Curvature Ductility Factor for Specimens C1, C2 and C3 86

4.49 Comparison of Energy Indicator for Specimens C1, C2 and C3 86

4.50 Comparison of Displacement Ductility Factor for Specimens D1 and D2 87

4.51 Comparison of Curvature Ductility Factor for Specimens D1 and D2 87

4.52 Comparison of Energy Indicator for Specimens D1 and D2 87

4.53 Comparison of Displacement Ductility Factor for Specimens S1, S2 and S3 88

4.54 Comparison of Curvature Ductility Factor for Specimens S1, S2 and S3 88
4.55 Comparison of Energy Indicator for Specimens S1, S2 and S3
4.56 Comparison of Displacement Ductility Factor for Specimens S4 and S5
4.57 Comparison of Curvature Ductility Factor for Specimens S4 and S5
4.58 Comparison of Energy Indicator for Specimens S4 and S5
4.59 Comparison of Displacement Ductility Factor for Specimens S7 and S8
4.60 Comparison of Curvature Ductility Factor for Specimens S7 and S8
4.61 Comparison of Energy Indicator for Specimens S7 and S8
4.62 Comparison of Displacement Ductility Factor for Specimens C1 and D1
4.63 Comparison of Curvature Ductility Factor for Specimens C1 and D1
4.64 Comparison of Energy Indicator for Specimens C1 and D1
4.65 Comparison of Displacement Ductility Factor for Specimens S1 and S7
4.66 Comparison of Curvature Ductility Factor for Specimens S1 and S7
4.67 Comparison of Energy Indicator for Specimens S1 and S7
4.68 Comparison of Displacement Ductility Factor for Specimens S2 and S8
4.69 Comparison of Curvature Ductility Factor for Specimens S2 and S8
<table>
<thead>
<tr>
<th>Section</th>
<th>Comparison</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.70</td>
<td>Comparison of Energy Indicator for Specimens S2 and S8</td>
<td>97</td>
</tr>
<tr>
<td>4.71</td>
<td>Comparison of Displacement Ductility Factor for Specimens C1 and R1</td>
<td>98</td>
</tr>
<tr>
<td>4.72</td>
<td>Comparison of Curvature Ductility Factor for Specimens C1 and R1</td>
<td>99</td>
</tr>
<tr>
<td>4.73</td>
<td>Comparison of Energy Indicator for Specimens C1 and R1</td>
<td>99</td>
</tr>
<tr>
<td>4.74</td>
<td>Comparison of Displacement Ductility Factor for Specimens C2 and R2</td>
<td>100</td>
</tr>
<tr>
<td>4.75</td>
<td>Comparison of Curvature Ductility Factor for Specimens C2 and R2</td>
<td>100</td>
</tr>
<tr>
<td>4.76</td>
<td>Comparison of Energy Indicator for Specimens C2 and R2</td>
<td>101</td>
</tr>
<tr>
<td>4.77</td>
<td>Comparison of Displacement Ductility Factor for Specimens C2 and R3</td>
<td>102</td>
</tr>
<tr>
<td>4.78</td>
<td>Comparison of Curvature Ductility Factor for Specimens C2 and R3</td>
<td>102</td>
</tr>
<tr>
<td>4.79</td>
<td>Comparison of Energy Indicator for Specimens C2 and R3</td>
<td>102</td>
</tr>
<tr>
<td>4.80</td>
<td>Comparison of Curvature Ductility Factor for Specimens D1 and R5</td>
<td>103</td>
</tr>
<tr>
<td>4.81</td>
<td>Comparison of Energy Indicator for Specimens D1 and R5</td>
<td>104</td>
</tr>
<tr>
<td>4.82</td>
<td>Comparison of Curvature Ductility Factor for Specimens D2 and R6</td>
<td>105</td>
</tr>
<tr>
<td>4.83</td>
<td>Comparison of Energy Indicator for Specimens D2 and R6</td>
<td>105</td>
</tr>
<tr>
<td>4.84</td>
<td>Comparison of Displacement Ductility Factor for Specimens D2 and R7</td>
<td>106</td>
</tr>
<tr>
<td>4.85</td>
<td>Comparison of Curvature Ductility Factor for</td>
<td>106</td>
</tr>
</tbody>
</table>
Specimens D2 and R7

4.86 Comparison of Energy Indicator for Specimens D2 and R7

4.87 Comparison of Energy Indicator for Specimens R2 and R3

4.88 Comparison of Displacement Ductility Factor for Specimens R6 and R7

4.89 Comparison of Curvature Ductility Factor for Specimens R6 and R7

4.90 Comparison of Energy Indicator for Specimens R6 and R7

4.91 Comparison of Displacement Ductility Factor for Specimens R1, R2 and R4

4.92 Comparison of Curvature Ductility Factor for Specimens R1, R2 and R4

4.93 Comparison of Energy Indicator for Specimens R1, R2 and R4

4.94 Comparison of Displacement Ductility Factor for Specimens R5 and R7

4.95 Comparison of Curvature Ductility Factor for Specimens R5 and R7

4.96 Comparison of Energy Indicator for Specimens R5 and R7

4.97 Comparison of Displacement Ductility Factor for Specimens R6 and R8

4.98 Comparison of Curvature Ductility Factor for Specimens R6 and R8

4.99 Comparison of Energy Indicator for Specimens R6 and R8

5.1 Specimen under Bending Moment and Axial Load

5.2 Test set up
5.3 P-Δ Curves for Specimens C and CD 129
5.4 P-Δ Curves for Specimens S1 and S2 129
5.5 Comparison of P-Δ Curves for Specimens C, S1 and S2 130
5.6 P-Δ Curves for S2 and SD2 130
5.7 P-Δ Curves for Specimens CD, SD1 and SD2 131
5.8 Comparison of P-Δ Curves for all the Test Specimens 131
5.9 Comparison of Improvement of Lateral Load 132
5.10 One Quarter Model of Confined Concrete Cylinder 133
5.11 Stress Distributions in the GFRP Confined Cylinder 134
5.12 Finite Element Model of the Column 135
5.13 Reinforcement Elements in the Model 135
5.14 Loading and Boundary Conditions of the Model 136
5.15 Deflection of Specimen S1 137
5.16 Strain Distribution in Specimen S1 137
5.17 Deflection of Specimen S2 138
5.18 Strain Distribution of Specimen S2 138
5.19 Deflection of Specimen SD1 139
5.20 Strain Distribution of Specimen SD1 139
5.21 Deflection of Specimen SD2 140
5.22 Strain Distribution of Specimen SD2 140
5.23 Strain Distributions in Specimen SD2 at 30 kN Lateral Load 141
5.24 Comparison of P-Δ Curves of Specimen C 141
5.25 Comparison of P-Δ Curves of Specimen CD 142
5.26 Comparison of P-Δ Curves of Specimen S1 142
5.27 Comparison of P-Δ Curves of Specimen S2 143
5.28 Comparison of P-Δ Curves of Specimen SD1 143
5.29 Comparison of P-Δ Curves of Specimen SD2 144
5.30 Crack Propagation in FE Modeling 146
5.31 Loading History 147

xxiv
5.32 Comparison of P-Δ Curves for Model and Experimental for Control Specimen C1 147
5.33 Comparison of P-Δ Curves for Model and Experimental for Specimen S1 148
5.34 Comparison of P-Δ Curves for Model and Experimental for Specimen S4 148
5.35 Superimposed P-Δ Curves – Experimental versus Model for Specimen C1 149
5.36 Superimposed P-Δ Curves – Experimental versus Model for Specimen S1 149
5.37 Superimposed P-Δ Curves – Experimental versus Model for Specimen S4 149

B 1 Solid65- 3D Reinforced Concrete Solid (ANSYS 8.0) 178
B 2 Link8-3D Spars (ANSYS 8.0) 179
B 3 Shell 41- 3D Membrane Element (ANSYS 8.0) 179
B 4 Failure Surface Model for Concrete by William –Warnke (1975) 180
B 5 Element Connectivity 182