Contents

Chapter 1 Introduction to GaN: Metal Contacts Properties and Applications – A Review

1.1 Introduction 1
1.2 A brief review on metal-GaN contacts 3
1.2.1 Ohmic contacts 3
1.2.2 Schottky contacts 5
1.3 Crystal structure 7
1.4 Physical and Electronic properties of GaN 7
1.5 Application areas 8
1.6 Role of deep levels 9
1.7 Aim and Scope of the present investigation 10

Chapter 2 Schottky Barriers Formation and Characterization Techniques

2.1 Introduction 17
2.2 Formation of Schottky barriers: Brief description of important models 17
2.2.1 Basic electrical properties of Metals and Semiconductors 17
2.2.2 Schottky-Mott Model 19
2.2.3 Interface/Surface States Model 22
2.2.4 Other Models for barrier height formation 24
2.2.5 The SBH and the semiconductor-ionicity 25
2.2.6 The metal-induced-gap states 26
2.3 Current transport processes 27
2.4 Characterization Techniques 28
2.4.1 Current-Voltage (I-V) measurements 28
2.4.2 Norde method 30
2.4.3 Capacitance-Voltage (C-V) measurements 31
2.4.4 X-ray diffraction 33
2.4.5 Auger Electron Spectroscopy 34
2.4.5.1 Description of technique 34
2.4.5.2 Analytical information 35
2.4.5.3 Typical applications 35
2.4.5.4 Sample requirements 36
2.4.6 Rutherford Backscattering Spectroscopy (RBS) 36
2.4.6.1 Description of technique 36

Chapter 3 Thermal annealing behaviour on Schottky barrier parameters and structural properties of Au contacts to n-type GaN

3.1 Introduction 41
3.2 Experimental details 42
3.2.1 Sample preparation prior to metallization 42
3.2.2 Metallization on n-GaN 42
3.2.3 Bonding 43
3.3 Results and discussion 44
3.3.1 Current-Voltage measurements 44
3.3.2 Norde method 46
3.3.3 Capacitance-Voltage measurements 47
3.3.4 Rutherford backscattering spectroscopy (RBS) 48
3.3.5 X-ray diffraction 49
3.4 Conclusions 50

Chapter 4 Effects of thermal annealing on electrical and structural characteristics of Pd/n-GaN Schottky diode

4.1 Introduction 54
4.2 Experimental details 54
4.2.1 Sample preparation prior to metallization 54
4.2.2 Metallization on n-GaN 55
4.3 Results and discussion 56
4.3.1 Current-Voltage measurements 56
4.3.2 Capacitance-Voltage measurements 57
4.3.3 Auger Electron spectroscopy 59
4.3.4 X-ray diffraction 59
4.4 Conclusions 60
Chapter 5 Deep Level Transient Spectroscopy studies on n-type GaN

5.1 Introduction 63
5.2 Emission and capture kinetics of deep levels 63
5.3 Space charge transient technique 65
5.4 Deep Level Transient Spectroscopy (DLTS) 67
5.5 Principle of DLTS Technique 68
5.6 Determination of the deep level parameters 69
5.6.1 Estimation of thermal activation energy \((E_T) \) 69
5.6.2 Determination of the trap concentration \((N_T) \) 69
5.6.3 Measurement of capture cross-section \((\sigma_c) \) 70
5.7 Instrumentation for DLTS 71
5.7.1 Circuitry details of Signal processing unit 72
5.8 Effect of thermal annealing on deep levels on n-type GaN 82
5.8.1 Introduction 82
5.8.2 Results and discussion 83
5.8.3 Conclusions 85

Chapter 6 Summary Conclusions and suggestions for future work

6.1 Summary and Conclusions 89
6.2 Recommended Future Research 91