REFERENCES


Malte, H. 1986. Effects of aluminium in hard, acid water on metabolic rate, blood gas

Manjula Devi, P. 1988. Ecotoxicological studies on freshwater fishes with special


acid-base status and ion concentration of lamprey. *J. Exp. Biol.* 136 : 351-
361.

and Rattner, B.A. 1992. Physiological and nonspecific biomarkers. In:

Mayer, K.S. Multer, E.P. and Schreiber, P.K. 1985. Acid rain effects on fish and
wildlife. In: 'Fish and wild life' (Eds.), Mayer.K.T., Multer, E.D.and
1-9.

Mazeaud, M.M. and Mazeaud, F. 1981. The role of catecholamines in the stress
London*. pp. 49-75.

p.613.

106 : 201-212.


and aluminium on fish gills in laboratory experiments and in the field. In: 
'The Science of the Total Environment'. Elsevier Science Publishers, 
Amsterdam. pp.979-988.

Pic, P. 1978. A comparative study of the mechanism of Na⁺ and Cl⁻ excretion by the gill 
Physiol. 123: 155-162.

freshwater survival in the euryhaline cyprinodonts, Fundulus kansee and 

effects of acidity and aluminium exposure on the life cycle of the midge, 

tROUT (Salmo gairdneri) during acid and aluminum exposures in soft water of 

epithelial secretions in brook trout exposed to acid pH. Proc. Acad. Sci.43: 
33-55.

Porcella, D.B. 1989. Lake acidification mitigation project (LAMP): An overview of 
acid ecosystem perturbation experiment. Can. J. Fish. Aquat. Sci.46: 246- 
257.

precipitation'. ERI SOA 77. (Ed.), Wood, M. Electric Power Res. Inst Polo 
Alto California.

Potts, W.T.W. and Fleming, W.R. 1970. The effects of prolactin and divalent ions on 
the permeability to water of Fundulus kansae. J. Exp. Biol. 53: 317-327.

ovine prolactin on sodium balance in Fundulus kansae. J. Exp. Biol. 54: 
63-75.


* Original not seen