Table of Contents

Page No.

List of Tables ..I
List of Figures ..III
List of Chart ..VIII
Abbreviations ..IX
Units and Symbols ..XI

Chapter 1: Introduction and Objectives

1.1 Molecular Imaging .. 1
 1.1.1 Nuclear Imaging ... 2
1.2 Radiopharmaceutical .. 2-4
 1.2.1 Diagnostic Radiopharmaceuticals 4
 1.2.2 Therapeutic Radiopharmaceuticals 4-6
 1.2.3 Ideal Radiopharmaceutical 6
1.3 Radiopharmaceutical Design 6-7
1.4 Positron Emission Tomography (PET) 8
1.5 Radionuclides for PET Imaging 8-9
1.6 PET Radiopharmaceuticals Application 9-11
 1.6.1 Merits and Demerits of PET 11-12
1.7 Single-Photon Emission Computed Tomography (SPECT) 12
1.8 Radiometals and Radiopharmaceuticals for SPECT 12-14
1.9 Technetium-99m .. 14
 1.9.1 Ideal Properties of Technetium-99m 14
1.9.2 Generation of Technetium-99m 14
1.9.3 99mTechnetium Reduction 15
1.10 Chelate Units in the Design of 99mTc Radiopharmaceuticals 15
1.11 Technetium (V) complexes 16
1.11.1 Oxotechnetium(V) Complexes i.e. [Tc=O]$^{3+}$ Core 17
1.11.2 Tc(V) Hydrazino Nicotinamide (HYNIC) Derivatives 18
1.11.3 Nitridotechnetium(V) Complexes i.e. [Tc≡N]$^{2+}$ Core 18
1.11.4 [O=Tc=O]$^+$ Core 19
1.11.5 [Tc(CO)$_3$]$^+$ Core 19
1.12 Target Specific SPECT Radiopharmaceuticals 20
1.13 Magnetic Resonance Imaging (MRI) 21
1.14 Principle of MRI 21-24
1.15 Spin-Lattice Relaxation (T_1) 24
1.16 Spin-Spin Relaxation (T_2) 25
1.17 Contrast Agents 25
1.17.1 Classification of Contrast Agent 26
1.17.2 T_1 and T_2 Contrast Agent 26
1.17.3 Parameters Affect Relaxivity of T_1 Contrast Agent 27
1.17.4 Stability of Gadolinium Complexes 28
1.18 DOTA Based Frameworks 28
1.19 Geometry of Complexes 29
1.20 DTPA Based Frameworks 30
1.21 TETA Based Frameworks 31
1.22 HOPO Based Contrast Agents 31-32
1.23 Commercial Gd Based Contrast Agents 32
1.24 Biocompatibility 32-34
1.24.1 Biodistribution 34
1.24.2 Dosage 34
1.24.3 Osmolality 34
1.24.4 Toxicity: Kinetic Inertness 34
1.24.5 Thermodynamic Stability 35
1.25 Responsive Agents 35
 1.25.1 pH Sensitive Agents 35
 1.25.2 Redox Potential Sensitive Agents 36
 1.25.3 Enzyme Responsive Agents 36
 1.25.4 Calcium Sensitive Contrast agents 36
1.26 Targeting Cells with Gd(III) Based Probes 37
 1.26.1 Endothelial Integrin $\alpha_1\beta_3$ 37
1.26.2 Visualization of Tumor Cells via the Amino Acids Transporting System 37
1.26.3 Tissue or Organ Specific Contrast Agents 38
1.27 Aim of Thesis 38-39

References 42-47

Chapter 2: Synthesis, Radiolabeling and Biological Evaluation of Coumarin Coupled Nitroimidazoles as Hypoxia Marker

2.1 Cancer 48
 2.1.1 Genetic Factor Responsible for Cancer 49
 2.1.2 Metastasis in Cancer 49-51
2.2 Hypoxia 51
 2.2.1 Acute Hypoxia 52
 2.2.2 Chronic Hypoxia 52
2.3 Hypoxia Responsive Gene 54
2.4 Detection of Hypoxia 55
 2.4.1 Polarographic Oxygen Electrode 55
2.4.2 19F MRI

2.5 Nitroimidazoles Based Hypoxia Markers

2.5.1 PET Based Radiopharmaceutical 56

2.5.2 SPECT Based Radiopharmaceutical 59

2.6 Dual Modality Imaging 60

2.7 Coumarins as Fluorescent Probe 61

2.8 Coumarins as Complexing Agent 62

2.9 Coumarins as Antitumor Agent 62

2.10 Molecular Docking 63

2.11 Objectives 63

2.12 Results and Discussion 64

2.12.1 Biological Characterization 64

(a) Flow Cytometric Analysis 64-65

(b) Cell Survival Activity of 2NIHC 66

2.12.2 Computational Analysis 66

(a) Linear Interaction Energy Model 66

(b) Ligand-Receptor Docking 67

2.12.3 Radiochemistry (Quality Control of Labeled Conjugate) 68

2.12.4 In-vivo study 69

(a) Biodistribution Study in Mice Bearing Hypoxic Tumor

(b) Scintigraphy in Mice Bearing Normal and Hypoxic tumor 71

2.12.5 Antitumor Screening 71

2.13 Conclusion 72

2.14 Experimental 73

2.14.1 Synthesis 73

2.14.2 In-vitro Study 76

(a) Cell uptake by Flow Cytometry 76
(b) Cytotoxicity of 2NIHC 77

2.14.3 Computational Analysis 77
(a) Linear Interaction Energy Model 77
(b) Ligand-Receptor Docking 77

2.14.4 Radiochemistry 77
(a) 99mTc Radiocomplexation of 2-NIHC and 4-NIHC 77
(b) Radiochemical Purity of 99mTc-2NIHC and 4-NIHC Complexes 78
(c) Serum Stability of Complex 78

2.14.5 In-vivo Study 78
(a) Biodistribution Study in Mice Bearing Hypoxic tumor 78
(b) Scintigraphy in Mice Bearing Normal and Hypoxic tumor 79
(c) Antitumor Screening 79

Characterization Data 81-92

References 93-100

Chapter 3: Synthesis, Conjugation And Relaxation Studies Of Gadolinium(III)-4-Benzothiazol-2-yl-Phenylamine As Potential Brain Specific MR Contrast Agent

3.1 Receptors 101
3.2 Dopamine Receptors 101
3.3 Serotonin Receptor 102
 3.3.1 Classification of Serotonin Receptor 102
3.4 Acetylcholine (AChR) Receptor 103
3.5 Imaging of Neuroreceptors 103
3.6 Radiotracers for Imaging Neuroreceptors 104
3.7 Benzothiazole as Probe for 5-HT$_3$ Receptor 105
3.8 Design of the DO3A-Benzothiazole as MR Contrast Agent 106
3.9 Role of Mannitol in Crossing BBB 107
3.10 Objective 108
3.11 Results and discussion 108
 3.11.1 Relaxometric Studies 108
 3.11.2 Inner Sphere Hydration Number (q) Determination 109
 3.11.3 Determination of Protonation and Thermodynamic Stability Constant 109
 3.11.4 Kinetic Stability 110
 3.11.5 Biological studies 111
 (a) 99mTc Radiocomplexation of DO3A-BT 111
 (b) Blood Kinetic Study 111
 (c) Serum Stability Assay 112
 (d) Binding Affinity for Neuronal Cells 112
 (e) Biodistribution Studies 113

3.12 Conclusion 114
3.13 Experimental 115
 3.13.1 Synthesis 115-118
 3.13.2 In vitro Relaxivity Measurement 118
 3.13.3 Equilibrium Measurements 118
 3.13.4 Kinetic Measurement 119
 3.13.5 UV-Visible Absorption and Luminescence Measurement 119
 3.13.6 Biological Studies 120
 (a) 99mTc Radiocomplexation of DO3A-BT 120
 (b) Radiochemical Purity of 99mTc-DO3A-BT Complex 120
 (c) Blood Kinetics 120
 (d) Human Serum Stability 120
 (e) Radioligand Binding Assay for Neuronal Cells 120
Chapter 4: Synthesis and Biological Evaluation of Novel 99mTc-Labeled Benzothiazole and Polyfluorinated Coumarins for Spect Imaging

4.1 Neurological disorders 137
 4.1.1 Types of neurological disorders 137

4.2 Alzheimer’s Disease 137
 4.2.1 Neuropathologic Features of AD 138
 4.2.2 Proteomics and Genomics of AD 139
 4.2.3 Diagnosis of Alzheimer disease 140

4.3 SPECT Based Imaging Agents for Amyloid Plaques 140
 4.3.1 Radioiodinated Probes for imaging of Aβ Plaques 141
 4.3.2 99mTc Complexes for Imaging of Aβ Plaques 142

4.4 PET Based Imaging Agents for Aβ Plaques 143

4.5 MRI Based Imaging Agents for Aβ Plaques 143

4.6 19F-MRI Based Imaging Agents for Aβ Plaques 144

4.7 Objective 144

4.8 Results and Discussion 145
 4.8.1 99mTc Radiocomplexation of DTPA-BT, BT-PF, HC-PF 145
 4.8.2 Biodistribution Studies 146
 4.8.3 Inhibition of Acetylcholine Esterase Enzyme 147

4.9 Conclusion 148

4.10 Experimental 149-150
 4.10.1 Synthesis 151-154

 4.10.2 Radiochemistry
 (a) 99mTc Radiocomplexation of DTPA-BT, BT-PF, HC-PF 154
(b) Radiochemical Purity of ^{99m}Tc- DTPA-BT, ^{99m}Tc- BT-PF and ^{99m}Tc- HC-PF Complexes 154

4.10.3 Biodistribution Study in Normal Mice 154

4.10.4 AChE Inhibition Experiment 155

Characterization Data 156-165

References 166-171

LIST OF PUBLICATIONS 172