Chapter 2

Not External Domination of Vertices (Ned) and Internally Stable Vertex Set (Int) of Fuzzy Graphs

2.1 Introduction

In crisp graph $G = (X, R)$, the well known concepts of not external domination Ned (R) and internally stable sets Int (R) are studied. For the fuzzy graphs those concepts have been extended under some valued logical operators by Kitainik[39] and [40].

Assia et al.[5] considered the logical operators \wedge, \vee and composition max $\rightarrow L$ (composition L). By using these logical operators they extended the concepts of Int (R) and show that this set is characterized by solving a mathematical programming problem. Also, they discussed t- norm, t-co-norm and s-norm. Finally, they investigated the fuzzy counterpart of the set not external domination Ned (R).

In this chapter, we recall some basic concepts and known properties related to crisp graphs. We establish rigorous results describing the extension of Ned (ρ) and Int(ρ) of fuzzy graphs. Here, we consider the logical operators \bar{L}, L and the composition max-\bar{L} (composition \bar{L}). We introduce new notions of the sets Ned (ρ), Int (ρ), weak lattices and sub weak lattices in fuzzy graphs. Further, we investigate the relation between the sets Ned (ρ), Int (ρ), weak lattices and sub weak lattices of fuzzy graphs.
with some useful illustrations. Finally, the set \(\text{Int}(\rho) \) is characterized by solving a mathematical programming problem in fuzzy graph.

2.2 Preliminaries

This section contains the discussion of some basic definitions and results which are helpful for our main results.

Definition 2.2.1[5] A t-norm is a function \(T: [0, 1] \times [0, 1] \rightarrow [0, 1] \), associative, symmetric, monotonic and such that \(T(\alpha, 1) = \alpha \) for each \(\alpha \in [0, 1] \).

Definition 2.2.2[5] A t-conorm \(S \) can be constructed from a t-norm \(T \), by the following version of DeMorgan’s identity: for all \(\alpha, \beta \in [0, 1] \), \(S(\alpha, \beta) = T(\text{N}(\alpha), \text{N}(\beta)) \).

Note. The logical operators \((\land, \lor, \neg, \bar{L}, \bar{L}, \bar{N})\) on fuzzy subsets are defined as follows: \(\land(\alpha, \beta) = \min\{\alpha, \beta\} \), \(\lor(\alpha, \beta) = \max\{\alpha, \beta\} \), \(\bar{L}(\alpha, \beta) = \max\{\alpha + \beta - 1, 0\} \), \(\bar{L}(\alpha, \beta) = \min\{\alpha + \beta, 1\} \) and \(\text{N}(\alpha) = 1 - \alpha \).

Definition 2.2.3[5] Let \(G = (X, R) \) be graph, where \(X \) is an arbitrary finite non empty set, \(R \) a relation on \(X \). If \(A \subseteq X \), the set elements of \(X \) are dominated by \(A \) then the composition of \(A \) and \(R \) such that \(A \circ R = \{ y \in X \mid (\exists x \in A) x R y \} \).

Definition 2.2.4[5] Let \(G = (X, R) \) be graph, where \(X \) is an arbitrary finite non empty set, \(R \) a relation on \(X \). If \(A \subseteq X \) is said to be not externally dominated then “no element
in A is dominated by an element in \overline{A}. That is, $(\forall y)[y \in A \Rightarrow (\forall x \in \overline{A}) \text{ Not } (x R y)]$.

Which is denoted by Ned (R). Here, \overline{A} is the complement of A and $\overline{A} = X - A$.

Definition 2.2.5[5] Let $G = (X, R)$ be graph, where X is an arbitrary finite non empty set, R a relation on X. If $A \subseteq X$ is said to be internally stable then “no element in A is dominated by another element in A.” Then, $(\forall y)[y \in A \Rightarrow (\forall x \in A) x \neq y, \text{ Not } (x R y)]$.

Which is denoted by Int (R).

Proposition 2.2.6[5] Let $G = (X, R)$ be a loop free graph, where X is an arbitrary finite non empty set, R a relation on X and $A \subseteq X$. The following are equivalence

(i) A is not externally dominated $\iff \overline{A} \circ R \subseteq A \iff A \circ R^{-1} \subseteq A$

(ii) A is internally stable $\iff A \circ R \subseteq \overline{A} \iff A \circ R^{-1} \subseteq \overline{A}$.

Definition 2.2.7[94] Let $\mu: X \to [0, 1]$ be a fuzzy subset, if $\mu(x) = 1$ for some $x \in X$, then μ is called normalized.

Note. (i) The set of all fuzzy subsets defined on X, denoted by $\varphi(X)$, identified with points $(\mu(x_1), \mu(x_2), \ldots, \mu(x_n))$ of $[0, 1]^n$.

(ii) The zero of $\varphi(X)$ is denoted by $0 (0(x) = 0$ for all $x \in X)$.

(iii) The units by $1 (1(x) = 1$ for all $x \in X)$.

(iv) The constant $(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}) \in [0, 1]^n$ by $\frac{1}{2}$.
Definition 2.2.8[5] The set of all fuzzy relations defined on X is denoted by $\varphi(X \times X)$.

Let $\rho, \sigma \in \varphi(X \times X)$, then the max-$L$ composition of ρ and σ is defined as follows

$$(\rho \circ \sigma)(x, y) = \max_{z \in X} \{ \rho(x, z) + \sigma(z, y) - 1, 0 \}$$

for all $x, y \in X$.

Note. If R and S are crisp relations then, the composition of R and S can be defined as

$$(R \circ S)(x, y) = \{ (x, y) \in X \times X / \exists z \in X, xRz, zSy \}$$

for each $x, y \in X$. The operation L is associative; its zero elements are the zero relation and the unity is identity relation I. If $R \circ R \circ \ldots \circ R$ (m times) then it denoted by R^m.

Definition 2.2.9[76] A lattice is an algebraic system (L, \land, \lor) with two binary operations \land and \lor on a non empty set L where \land and \lor satisfy idempotent, commutative, associative and the absorption laws.

Example 2.2.10[5] The algebraic system $(\varphi(X), \land, \lor)$ is a lattice under Zadeh’s inclusion $\mu_1 \subseteq \mu_2 \iff \mu_1(x) \leq \mu_2(x)$ for all $x \in X$.

Definition 2.2.11[76] Let (L, \land, \lor) be lattice then the non empty subset S of the lattice L is said to be sub lattice if it is closed under the operations \land and \lor of L that is, if $(a \land b) \in S$ and $(a \lor b) \in S$ for all $a, b \in S$.
2.3 Logical Operators in Fuzzy Graphs

In this section, we find some properties of logical operators and composition \(\mathcal{L} \) in fuzzy graphs with examples.

Definition 2.3.1. The logical operators \(\overline{L} \) and \(L \) are defined as follows; Let \(\mu_1 \) and \(\mu_2 \) be any two elements of \(\varphi(X) \), then for all \(x \in X \),

(i) \((\mu_1 \overline{L} \mu_2)(x) = \max \{ \mu_1(x) + \mu_2(x) - 1, \ 0 \} \)

(ii) \((\mu_1 L \mu_2)(x) = \min \{ \mu_1(x) + \mu_2(x), \ 1 \} \)

(iii) \(\overline{\mu_1}(x) = \overline{\mu_1(x)} = 1 - \mu_1(x). \)
Definition 2.3.2. Let μ be fuzzy subset and ρ a fuzzy relation on a non empty finite set X and the composition L, then the composition of μ and ρ, $(\mu L \rho)$ is defined as for each $x \in X$, $(\mu L \rho)(x) = \max \{ \mu(x) + \rho(x, y) - 1, 0 \}$.

Note. In fuzzy graph $G = (\mu, \rho)$, the composition of μ and ρ can be defined as for each $a \in X$, $(\mu(a) L \rho(a, b)) = \max \{ \mu(a) + \rho(a, b) - 1, 0 \}$.

Proposition 2.3.3. Let $\rho, \sigma \in \varphi(X \times X)$ and the fuzzy subsets $\mu_1, \mu_2 \in \varphi(X)$, under the composition L the following axioms are valid

(i) $(\Theta L \rho) = \Theta$

(ii) $\mu_1 \subseteq \mu_2 \Rightarrow (\mu_1 L \rho) \subseteq (\mu_2 L \rho)$

(iii) $\rho \subseteq \sigma \Rightarrow (\mu_1 L \rho) \subseteq (\mu_2 L \sigma)$

(iv) $\mu_1 \mu_2 (\rho L \sigma) = (\mu_1 L \rho) (\mu_2 L \sigma)$

(v) $(\mu_1 \mu_2) L \rho \subseteq (\mu_1 L \rho) L (\mu_2 L \rho)$

(vi) $(\mu_1 \mu_2) L \rho \subseteq (\mu_1 L \rho) L (\mu_2 L \rho)$

(vii) $\mu_1 (\rho L \sigma) = (\mu_1 L \rho) L (\mu_1 L \sigma)$

(viii) $\mu_1 (\rho L \sigma) \subseteq (\mu_1 L \rho) L (\mu_1 L \sigma)$

Proof. (i) By the definition 2.3.2, $(\Theta L \rho)(x) = \max \{ 0 + \rho(x, y) - 1, 0 \}$, (since $0 \leq \rho(x, y) \leq 1$ for all $x \in X$)

(ii) We know that, $\mu_1 \subseteq \mu_2 \Rightarrow \mu_1(x) \leq \mu_2(x)$ for all $x \in X$. Then, there exist $y \in X$, for any relation $\rho(x, y)$ such that $\mu_1(x) \geq \rho(x, y)$ and $\mu_2(x) \geq \rho(x, y)$

$\Rightarrow [\mu_1(x) + \rho(x, y)] \leq [\mu_2(x) + \rho(x, y)]$

$\Rightarrow [\mu_1(x) + \rho(x, y) - 1] \leq [\mu_2(x) + \rho(x, y) - 1]$

$\Rightarrow \max \{ \mu_1(x) + \rho(x, y) - 1 \} \leq \max \{ \mu_2(x) + \rho(x, y) - 1, 0 \}$

$\Rightarrow (\mu_1 L \rho)(x) \leq (\mu_2 L \rho)(x) \Rightarrow (\mu_1 L \rho) \subseteq (\mu_2 L \rho)$
Therefore, we have \(\mu_1 \subseteq \mu_2 \Rightarrow (\mu_1 \ll L \rho) \subseteq (\mu_2 \ll L \rho) \).

(iii) We know that, \(\rho \subseteq \sigma \Leftrightarrow \rho(x, y) \leq \sigma(x, y) \) for all \(x, y \in X \)

\[\Rightarrow [\mu_1(x) + \rho(x, y)] \leq [\mu_2(x) + \sigma(x, y)] , \] since \(\mu_1(x) \geq \rho(x, y) \) and \(\mu_2(x) \geq \sigma(x, y) \)

\[\Rightarrow [\mu_1(x) + \rho(x, y) - 1] \leq [\mu_2(x) + \sigma(x, y) - 1] \]

\[\Rightarrow \max \max \{ \mu_1(x) + \rho(x, y) - 1, 0 \} \leq \max \max \{ \mu_2(x) + \sigma(x, y) - 1, 0 \} \]

\[\Rightarrow (\mu_1 \ll L \rho)(x) \leq (\mu_2 \ll L \sigma)(x) \Rightarrow (\mu_1 \ll L \rho) \subseteq (\mu_2 \ll L \sigma) \]

Thus, we get \(\rho \subseteq \sigma \Rightarrow (\mu_1 \ll L \rho) \subseteq (\mu_2 \ll L \sigma) \).

(iv) Since the composition \(\ll L \) is associative, we have \(\mu, \ll L (\rho \ll L \sigma) = (\mu \ll L \rho) \ll L \sigma \).

By the definitions of \(\ll L \), logical operators \(\ll L \) and \(\ll \), we have (v), (vi), (vii) and (viii). ■

Example 2.3.4. Let \(G = (\mu, \rho) \) be a fuzzy graph where \(X = \{ a, b, c, d, e \} \),

\(\mu : X \rightarrow [0, 1] \) and \(\rho : X \times X \rightarrow [0, 1] \) with \(\mu(a) = 0.6, \mu(b) = 0.8, \mu(c) = 0.7, \)

\(\mu(d) = 0.9, \mu(e) = 0.5, \rho(a, b) = 0.4, \rho(b, c) = 0.7, \rho(c, d) = 0.5, \rho(b, d) = 0.6, \)

\(\rho(a, d) = 0.5, \rho(e, d) = 0.5 \) and \(\rho(a, e) = 0.3 \), defined as shown in the Figure 2.1.

![Figure 2.1: Logical operators in fuzzy graph](image)

(i) \(\Theta \ll L \rho = \Theta \) is trivial, see in page 21
(ii) If $\mu(a) \leq \mu(b) \Rightarrow 0.6 \leq 0.8$, now $\rho(a, b) = 0.4$

Then, $\overline{\mu(a)} \rho(a, b) = \max \max \{ \mu(a) + \rho(a, b) - 1, 0 \}$

$$= \max \max \{0.6 + 0.4 - 1, 0\} = 0$$ (2.1)

$\overline{\rho(b)} \rho(a, b) = \max \max \{ \mu(b) + \rho(a, b) - 1, 0 \}$

$$= \max \max \{0.8 + 0.4 - 1, 0\} = 0.2$$ (2.2)

From (2.1) and (2.2), we get $(\mu(a) \overline{\rho(a, b)}) \leq (\mu(b) \overline{\rho(a, b)})$.

Similarly, to show this result is satisfied for all the vertices in given fuzzy graph.

(iii) If $\rho(a, b) = 0.4$, $\rho(b, c) = \sigma(b, c) = 0.7$, $\mu(a) = 0.6$ and $\mu(b) = 0.8$

Now, $\rho(a, b) \leq \sigma(b, c)$

Then, we have $\overline{\mu(a)} \rho(a, b) = \max \max \{ \mu(a) + \rho(a, b) - 1, 0 \}$

$$= \max \max \{0.6 + 0.4 - 1, 0\} = 0$$ (2.3)

$\overline{\sigma(b, c)} \rho(a, b) = \max \max \{ \mu(b) + \sigma(b, c) - 1, 0 \}$

$$= \max \max \{0.8 + 0.7 - 1, 0\} = 0.5$$ (2.4)

From (2.3) and (2.4), we have $(\mu(a) \overline{\rho(a, b)}) \leq (\mu(b) \overline{\sigma(b, c)})$.

Similarly, to show this result is satisfied for all the edges in given fuzzy graph.

(iv) If $\mu(a) = 0.6$, $\rho(a, e) = 0.3$ and $\rho(a, d) = \sigma(a, d) = 0.5$

Then, $\overline{\mu(a)} \rho(a, e) = \max \max \{ \mu(a) + \rho(a, e) - 1, 0 \}$

$$= \max \max \{0.6 + 0.5 - 1, 0\} = 0.1$$

$\overline{\sigma(a, d)} \rho(a, e) = \max \max \{ \rho(a, e) + \sigma(a, d) - 1, 0 \}$

$$= \max \max \{0.3 + 0.5 - 1, 0\} = 0$$

$\overline{\rho(a, e)} \sigma(a, d) = \max \max \{0.6 + 0 - 1, 0\} = 0$

$\overline{\overline{\mu(a)}} \rho(a, e) \overline{\sigma(a, d)} = \max \max \{0.1 + 0.5 - 1, 0\} = 0$
Thus, we have \((\mu(a) \lceil (\rho(a, e) \lceil \sigma(a, d))) = ((\mu(a) \lceil \rho(a, e)) \lceil \sigma(a, d))\)

Similarly, to show this result is satisfied for all the vertices and edges in given fuzzy graph.

(v) If \(\mu(b) = 0.8, \mu(c) = 0.7\) and \(\rho(c, b) = 0.7\)

Then, \((\mu(b) \lceil \mu(c)) = \max \{ \mu(b) + \mu(c) - 1, 0 \} = \max \{ 0.8 + 0.7 - 1, 0 \} = 0.5\)

\[(\mu(b) \lceil \rho(c, b)) = \max \{ 0.8 + 0.7 - 1, 0 \} = 0.5\] (2.5)

\[(\mu(c) \lceil \rho(c, b)) = \max \{ 0.7 + 0.7 - 1, 0 \} = 0.4\]

\[(\mu(b) \lceil \rho(c, b)) \lceil (\mu(c) \lceil \rho(c, b)) = \max \{ 0.5 + 0.4 - 1, 0 \} = 0\] (2.6)

From (2.5) and (2.6), we get

\[(\mu(b) \lceil \mu(c)) \lceil \rho(c, b)) = ((\mu(b) \lceil \rho(c, b)) \lceil (\mu(c) \lceil \rho(c, b)))\]

Similarly, to show this result is satisfied for remaining vertices in given fuzzy graph.

(vi) If \(\mu(b) = 0.8, \mu(c) = 0.7\) and \(\rho(c, b) = 0.7\)

\[(\mu(b) \lceil \mu(c)) = \min \{ \mu(b) + \mu(c) - 1, 0 \} = \min \{ 0.8 + 0.7, 1 \} = 1\]

\[(\mu(b) \lceil \rho(c, b)) = \max \{ 1 + 0.7 - 1, 0 \} = 0.7\] (2.7)

\[(\mu(c) \lceil \rho(c, b)) = \max \{ 0.8 + 0.7 - 1, 0 \} = 0.5\]

\[(\mu(b) \lceil \rho(c, b)) \lceil (\mu(c) \lceil \rho(c, b)) = \min \{ 0.5 + 0.4, 1 \} = 0.9\] (2.8)

From (2.7) and (2.8), we have

\[(\mu(b) \lceil \mu(c)) \lceil \rho(c, b)) \leq ((\mu(b) \lceil \rho(c, b)) \lceil (\mu(c) \lceil \rho(c, b)))\]

Similarly, to show this result is satisfied for remaining vertices in given fuzzy graph.
(vii) If $\mu(d)=0.9$, $\rho(e, d)=0.5$ and $\rho(d, b)=\sigma(d, b)=0.6$

Then, we get $(\mu(d)L(\rho(e, d)\widetilde{L}\sigma(d, b)))=0$

$(\mu(d)L\rho(e, d))=0.4$, $(\mu(d)L\sigma(d, b))=0.5$

$(\mu(d)L\rho(e, d)\widetilde{L}(\mu(d)L\sigma(d, b)))=0$

Therefore, $(\mu(d)L(\rho(e, d)\widetilde{L}\sigma(d, b)))=(\mu(d)L\rho(e, d))\widetilde{L}(\mu(d)L\sigma(d, b)))$.

Similarly, to show this result is satisfied for all the vertices and edges in given fuzzy graph.

(viii) If $\mu(d)=0.9$, $\rho(e, d)=0.5$ and $\rho(d, b)=\sigma(d, b)=0.6$

$(\rho(e, d)L\sigma(d, b))=\min\{0.5+0.6, 1\}=1$

$((\mu(d)L(\rho(e, d)L\sigma(d, b)))=\max\max\{0.9+1, 0\}=0.9$ (2.9)

$(\mu(d)L\rho(e, d))=0.4$, $(\mu(d)L\sigma(d, b))=0.5$

$(\mu(d)L\rho(e, d)\widetilde{L}(\mu(d)L\sigma(d, b)))=\min\{0.5+0.4, 1\}=0.9$ (2.10)

From (2.9) and (2.10), we have

$((\mu(d)L(\rho(e, d)L\sigma(d, b)))=(\mu(d)L\rho(e, d))\widetilde{L}(\mu(d)L\sigma(d, b)))$

But, from $\mu(a)=0.6$, $\rho(a, e)=0.3$ and $\rho(a, d)=\sigma(a, d)=0.5$

$(\rho(a, e)L\sigma(a, d))=\min\{0.3+0.5, 1\}=0.8$

$((\mu(a)L(\rho(a, e)L\sigma(a, d)))=\max\max\{0.6+0.8, 0\}=0.4$ (2.11)

$(\mu(a)L\rho(a, e))=0$, $(\mu(a)L\sigma(a, d))=0.1$

$(((\mu(a)L\rho(a, e))L(\mu(a)L\sigma(a, d)))=0.1$ (2.12)

From (2.11) and (2.12), we have

$((\mu(d)L(\rho(e, d)L\sigma(d, b)))\geq(\mu(d)L\rho(e, d))\widetilde{L}(\mu(d)L\sigma(d, b)))$.

Similarly, to show this result is satisfied for all the vertices and edges in given fuzzy graph.
Definition 2.3.5. Let W be a non-empty collection of fuzzy subsets of X. The triplet (W, \overline{L}, L), is called a weak lattice, if the following axioms hold:

(i) **Commutative laws**

\[
(\mu_1 L \mu_2) = (\mu_2 L \mu_1) \quad (\mu_1 \overline{L} \mu_2) \overline{L} \mu_3 = \mu_1 \overline{L} (\mu_2 \overline{L} \mu_3)
\]

(ii) **Associative laws**

\[
(\mu_1 L \mu_2) L \mu_3 = \mu_1 L (\mu_2 L \mu_3) \text{ for all } \mu_1, \mu_2 \text{ and } \mu_3 \in W.
\]

Remark 2.3.6. An algebraic system $(\wp(X), \overline{L}, L)$ is a weak lattice under Zadeh’s inclusion $\mu_1 \subseteq \mu_2 \iff (\forall x, (\mu_1(x) \leq \mu_2(x)))$. Let $G = (\mu, \rho)$ be a fuzzy graph, then $(\mu (X), \overline{L}, L)$ is a weak lattice under the condition for each $a, b \in X \Rightarrow \mu(a) \leq \mu(b)$ and the composition L.

Example 2.3.7. Let μ_1, μ_2 and μ_3 be any fuzzy subsets of $\wp(X)$ where $\mu_1(x) = 0.4$, $\mu_2(x) = 0.7$ and $\mu_3(x) = 0.6$ for each $x \in X$ then, we have

(1) **Idempotent laws**

(i) $(\mu_1 \overline{L} \mu_1) = 0 \neq \mu_1$

(ii) $(\mu_1 L \mu_1) = 0.8 \neq \mu_1$, therefore, idempotent laws are not satisfied.

(2) **Commutative laws**

(i) $(\mu_1 \overline{L} \mu_2) = 0.1 = (\mu_2 \overline{L} \mu_1)$

(ii) $(\mu_1 L \mu_2) = 1 = (\mu_2 L \mu_1)$, therefore, commutative laws are satisfied.

(3) **Associative laws**

(i) $(\mu_1 \overline{L} \mu_2) \overline{L} \mu_3 = 0 = \mu_1 \overline{L} (\mu_2 \overline{L} \mu_3)$

(ii) $(\mu_1 L \mu_2) L \mu_3 = 1 = \mu_1 L (\mu_2 L \mu_3)$, therefore, associative laws are satisfied.
(4) Absorption laws

(i) \(\mu_1 \overline{L}(\mu_1 \overline{L} \mu_2) = 0.4 \neq \mu_1 \)

(ii) \(\mu_1 \overline{L}(\mu_1 \overline{L} \mu_2) = 0.5 \neq \mu_1 \)

If \(\mu_1(x) = 0.2 \), \(\mu_2(x) = 0.6 \), then we have \(\mu_1 \overline{L}(\mu_1 \overline{L} \mu_2) = 0 \neq \mu_1 \).

Therefore, absorption laws are not satisfied. Hence, \((\varphi(X), \overline{L}, \overline{L})\) is a weak lattice.

Note. In any algebraic system by using of the logical operators \(\overline{L} \) and \(L \), we have weak lattice conditions only, there is no strong lattice axioms.

Definition 2.3.8. Let \(\phi \neq S \subseteq W \subseteq \varphi(X) \). Then \((S, \overline{L}, \overline{L})\) is called a sub weak lattice of a weak lattice \((W, \overline{L}, \overline{L})\), if the following hold: \((\mu_1 \overline{L} \mu_2) \in S \) and \((\mu_1 \overline{L} \mu_2) \in S \) for all \(\mu_1, \mu_2 \in S \).

2.4 Not External Domination Set Ned \((\rho, \overline{L})\)

Definition 2.4.1. Let \(G = (\mu, \rho) \) be a fuzzy graph without loops and with underlying set \(X \) where \(\mu : X \rightarrow [0, 1], \rho : X \times X \rightarrow [0, 1] \), vertex \(a \in X \) is not externally dominated under the composition \(\overline{L} \) if \(((\mu(a) \overline{L} \rho(a, b)) \leq \mu(a)), ((\mu(a) \overline{L} \rho^{-1}(a, b)) \leq \mu(a)) \) for some \(b \in X \). We denote it by Ned \((\rho, \overline{L})\).

Example 2.4.2. Let \(G = (\mu, \rho) \) be a fuzzy graph where \(X = \{a, b, c, d\} \), \(\mu : X \rightarrow [0, 1] \), \(\rho : X \times X \rightarrow [0, 1] \) with \(\mu(a) = 0.4, \mu(b) = 0.6, \mu(c) = 0.8, \mu(d) = 0.5, \rho(a, b) = 0.3, \rho(b, c) = 0.5, \rho(c, d) = 0.5, \rho(d, a) = 0.2 \) and \(\rho(d, b) = 0.4 \), defined as shown in the Figure 2.2.
The edge ab, we get $(\mu(a) \ L \ \rho(a, b)) = \max \max \{0.6 + 0.3 - 1, 0\} = 0 \leq 0.6 = \mu(a)$

Similarly, $(\mu(a) \ L \ \rho^{-1}(a, b)) = \max \max \{0.4 + 0.3 - 1, 0\} = 0 \leq 0.4 = \mu(a)$. Thus, a is not external domination under the composition L and $a \in \text{Ned}(\rho, L)$. The edge bc, we get $(\mu(b) \ L \ \rho(b, c)) = \max \max \{0.4 + 0.5 - 1, 0\} = 0 \leq 0.4 = \mu(b)$. Similarly, $(\mu(b) \ L \ \rho^{-1}(b, c)) = \max \max \{0.6 + 0.5 - 1, 0\} = 0.1 \leq 0.6 = \mu(b)$. Thus, b is not external domination under the composition L and $b \in \text{Ned}(\rho, L)$. The edge cd, we get $(\mu(c) \ L \ \rho(c, d)) = \max \max \{0.2 + 0.5 - 1, 0\} = 0 \leq 0.2 = \mu(c)$ and $(\mu(c) \ L \ \rho^{-1}(c, d)) = \max \max \{0.8 + 0.5 - 1, 0\} = 0.3 \leq 0.8 = \mu(c)$. Hence, we get c is not external domination under the composition L and $c \in \text{Ned}(\rho, L)$. The edge ad, we get $(\mu(d) \ L \ \rho(d, a)) = \max \max \{0.5 + 0.2 - 1, 0\} = 0 \leq 0.5 = \mu(d)$. Similarly, $(\mu(d) \ L \ \rho^{-1}(d, a)) = \max \max \{0.5 + 0.2 - 1, 0\} = 0 \leq 0.5 = \mu(d)$. Thus, we get d is said to be not external domination under L and $d \in \text{Ned}(\rho, L)$. The edge db, we get $(\mu(d) \ L \ \rho(d, b)) = \max \max \{0.5 + 0.4 - 1, 0\} = 0 \leq 0.5 = \mu(d)$. Similarly, we have $(\mu(d) \ L \ \rho(d, b)) = \max \max \{0.5 + 0.4 - 1, 0\} = 0 \leq 0.5 = \mu(d)$. Thus, we say that d is not external domination under the composition L and $d \in \text{Ned}(\rho, L)$. We use
similar method to the edges ba, cb, dc, ad and bd we get, b, c, d, a and b are not external domination under the composition L and the vertices a, b, c and d are in $\text{Ned}(\rho, L)$.

Example 2.4.3. Let $G = (\mu, \rho)$ be a fuzzy graph where $X = \{a, b, c\}$, $\mu : X \rightarrow [0, 1]$ and $\rho : X \times X \rightarrow [0, 1]$ with $\mu(a) = 0.9, \mu(b) = 1.0, \mu(c) = 0.7, \rho(a, b) = 0.9, \rho(b, c) = 0.7$ and $\rho(c, a) = 0.7$ defined as shown in the Figure 2.3.

![Figure 2.3: Ned (\rho, L) fuzzy graph](image)

The edge ab, we get $L(\mu(a), a, b) = \max\{0.1 + 0.5 - 1, 0\} = 0 \leq 0.1 = \mu(a)$

Similarly, $(\mu(a) L (a, b)^{-1}) = \max\{0.9 + 0.9 - 1, 0\} = 0.8 \leq 0.9 = \mu(a)$. Thus, a is not external domination under the composition L and $a \in \text{Ned}(\rho, L)$. The edge bc, we get, $L(\mu(b), b, c) = \max\{0 + 0.7 - 1, 0\} = 0 \leq 0 = \mu(b)$. Similarly, $(\mu(b) L (b, c)^{-1}) = \max\{1 + 0.7 - 1, 0\} = 0.7 \leq 1 = \mu(b)$. Thus, b is not external domination under the composition L and $b \in \text{Ned}(\rho, L)$. From the edge ca, we have, $(\mu(c) L (c, a) = \max\{0.3 + 0.7 - 1, 0\} = 0 \leq 0.3 = \mu(c)$ and $(\mu(c) L (c, a)^{-1}) = \max\{0.7 + 0.7 - 1, 0\} = 0.4 \leq 0.7 = \mu(c)$. Hence, we have c is not external domination under the composition L and $c \in \text{Ned}(\rho, L)$. Similar
method to apply the edges $ba, ca,$ and ac, we have b, c and a are not external domination under the composition \overline{L} and the vertices $a, b, c \in \text{Ned}(\rho, \overline{L})$.

Proposition 2.4.4. Let $G = (\mu, \rho)$ be a fuzzy graph without loops and with underlying set X where $\mu : X \rightarrow [0, 1]$ and $\rho : X \times X \rightarrow [0, 1]$, the following are satisfied.

(i) The set $\text{Ned}(\rho, \overline{L})$ is a sub weak lattice of the weak lattice $(\mu(X), \overline{L}, \underline{L})$

(ii) $\text{Ned}(\rho, \overline{L})$ contains any constant $k \cdot 1$ of the set $\varphi(X)$.

Proof. (i) Let $a, b \in \text{Ned}(\rho, \overline{L})$.

Then, we have $((\mu(a) \overline{L} \rho^{-1}(a, b)) \leq \mu(a))$ and $((\mu(b) \overline{L} \rho^{-1}(a, b)) \leq \mu(b))$ (2.13)

$((\overline{\mu}(a) \overline{L} \rho(a, b)) \leq \overline{\mu(a)})$ and $((\overline{\mu}(b) \overline{L} \rho(b, a)) \leq \overline{\mu(b)})$ (2.14)

To prove: $((\mu(a) \overline{L} \mu(b)) \overline{L} \rho^{-1}(a, b)) \leq (\mu(a) \overline{L} \mu(b))$

Now $(\mu(a) \overline{L} \mu(b)) \overline{L} \rho^{-1}(a, b)) \leq (\mu(a) \overline{L} \rho^{-1}(a, b)) \overline{L} (\mu(b) \overline{L} \rho^{-1}(a, b))$

$$\leq (\mu(a) \overline{L} \mu(b)) \quad \text{(since (2.13))}$$

Similarly, to prove $((\mu(a) \overline{L} \mu(b)) \overline{L} \rho(a, b)) \leq (\mu(a) \overline{L} \mu(b))$ (since (2.14))

Same method to use the operator \overline{L}, then, we have the following results

$((\mu(a) \overline{L} \mu(b)) \overline{L} \rho(a, b)) \leq (\mu(a) \overline{L} \mu(b))$, $((\mu(a) \overline{L} \mu(b)) \overline{L} \rho^{-1}(a, b)) \leq (\mu(a) \overline{L} \mu(b))$

Hence, $\text{Ned}(\rho, \overline{L})$ is a sub weak lattice of the weak lattice $(\mu(X), \overline{L}, \underline{L})$.

(ii) Let $k \in [0, 1]$ for all $x \in X$. Then, there exist $y \in X$ such that

$$((k \cdot 1) \overline{L} \rho^{-1}(x, y)) = \max \{ k + \rho^{-1}(x, y) - 1, 0 \}, \text{ since } 0 \leq \rho(x, y) \leq 1 \quad (2.15)$$

$$((\bar{k} \cdot 1) \overline{L} \rho(x, y)) = \max \{ \bar{k} + \rho(x, y) - 1, 0 \} \leq \bar{k} \quad (2.16)$$

From (2.15) and (2.16), we get the condition for an element in $\text{Ned}(\rho, \overline{L})$

Hence, (ii) is proved. ■
Example 2.4.5. Let $G = (\mu, \rho)$ be a fuzzy graph where $X = \{a, b, c, d\}$, $\mu : X \rightarrow [0, 1]$, $\rho : X \times X \rightarrow [0, 1]$ with $\mu(a) = 0.5$, $\mu(b) = 0.6$, $\mu(c) = 0.7$, $\mu(d) = 1.0$, $\rho(a, b) = 0.4$, $\rho(a, c) = 0.3$, $\rho(b, d) = 0.5$, and $\rho(c, d) = 0.6$ defined as shown in the Figure 2.4.

![Figure 2.4: Ned (\rho, L) sub weak lattice fuzzy graph](image)

Consider the edge ab and $a, b \in \text{Ned}(\rho, L)$, we get

$(\mu(a)\overline{L}\rho^{-1}(a, b)) = 0 \leq 0.5 = \mu(a)$ and $(\mu(b)\overline{L}\rho^{-1}(a, b)) = 0 \leq 0.6 = \mu(b)$

Now, $(\mu(a)\overline{L}\mu(b))\overline{L}\rho^{-1}(a, b)) = 0 \leq 0.1 = (\mu(a)\overline{L}\mu(b))$. Therefore, we have $(\mu(a)\overline{L}\mu(b))\overline{L}\rho^{-1}(a, b)) \leq (\mu(a)\overline{L}\mu(b))$. Similarly, we show that $(\mu(a)\overline{L}\mu(b))\overline{L}\rho(a, b)) \leq (\mu(a)\overline{L}\mu(b))$ and $((\mu(a)\overline{L}\mu(b))\overline{L}\rho^{-1}(a, b)) \leq (\mu(a)\overline{L}\mu(b))$. We use similar method and find solution to the remaining edges ba, ac, ca, cd, dc, bd and db. Thus, we have Ned (ρ, L) is sub weak lattice of $(\mu(X), \overline{L}, L)$. Hence, (i) of proposition 2.4.4. is satisfied.

Example 2.4.6. If $k \in [0, 1]$ and any relation ρ of a non empty set X such that $0 \leq \rho(x, y) \leq 1$ for all $x, y \in X$, consider $k = 0.6$ and $\rho(x, y) = 0.6$. Then, we have

$((k \cdot 1)\overline{L}\rho^{-1}(x, y)) = \max \{0.6 + 0.6 - 1, 0\} = 0.2 \leq 0.6 = k \quad (2.17)$
From (2.17) and (2.18), we have the conditions (2.15) and (2.16) respectively. Hence, (ii) of proposition 2.4.4. is satisfied.

Proposition 2.4.7. Let $G = (\mu, \rho)$ be a fuzzy graph without loops and with underlying set X where $\mu : X \rightarrow [0, 1]$ and $\rho : X \times X \rightarrow [0, 1]$. If $\mu(a) + \mu(b) \leq 1$ for all $a, b \in X$. Then, $a, b \in \text{Ned} \left(\rho, \overline{L} \right)$. Converse is not true.

Proof. If $\mu(a) + \mu(b) \leq 1$, for all $a, b \in X$, then by the definition of $\text{Ned} \left(\rho, \overline{L} \right)$ and $(\mu(a) \overline{L} \rho(a, b))$ and $(\mu(a) \overline{L} \rho^{-1}(a, b))$ are always 0. Thus, we have the following results

(i) $(\mu(a) \overline{L} \rho(a, b)) \leq \mu(a))$ and $(\mu(a) \overline{L} \rho^{-1}(a, b)) \leq \mu(a))$

(ii) $(\mu(b) \overline{L} \rho(a, b)) \leq \mu(b))$ and $(\mu(b) \overline{L} \rho^{-1}(a, b)) \leq \mu(b))$.

Hence, we get $a, b \in \text{Ned} \left(\rho, \overline{L} \right)$. ■

Example 2.4.8. Let $G = (\mu, \rho)$ be a fuzzy graph where $X = \{a, b, c, d\}$, $\mu : X \rightarrow [0, 1]$, $\rho : X \times X \rightarrow [0, 1]$ with $\mu(a) = 0.6$, $\mu(b) = 0.3$, $\mu(c) = 0.5$, $\mu(d) = 0.4$, $\rho(a, b) = 0.1$, $\rho(b, c) = 0.3$, $\rho(c, d) = 0.2$, $\rho(d, a) = 0.4$ and $\rho(d, b) = 0.3$, defined as shown in the Figure 2.5.

![Figure 2.5: \(\mu(a) + \mu(b) \leq 1\), fuzzy graph](image-url)
Consider the edge ab, we have $(\overline{\mu(a) L^\mu a b}) = \max \{0.4 + 0.1 - 1, 0\} = 0$, and $\overline{\mu(a)} = 0.4$. Thus, we get $(\overline{\mu(a) L^\mu a b}) \leq \overline{\mu(a)}$. Similarly, we have $(\overline{\mu(a) L^\mu a b^-1 a b}) \leq \overline{\mu(a)}$. Therefore, a is not external domination under the composition L and $a \in \text{Ned}(\bar{\rho}, \bar{L})$. By considering remaining edges bc, cd, da and db as well as ba, cb, dc, ad and bd, we get the vertices a, b, c and d are not external domination under L and $a, b, c, d \in \text{Ned}(\bar{\rho}, L)$.

Converse is not true

Example 2.4.9. Let $G = (\mu, \rho)$ be a fuzzy graph where $X = \{a, b, c, d\}$, $\mu : X \to [0, 1]$, $\rho : X \times X \to [0, 1]$ with $\mu(a) = 0.6$, $\mu(b) = 0.5$, $\mu(c) = 0.8$, $\mu(d) = 0.7$, $\rho(a, b) = 0.5$, $\rho(b, c) = 0.4$, $\rho(c, d) = 0.6$ and $\rho(d, a) = 0.4$ defined as shown in the Figure 2.6.

Consider the edge ab, we have $(\overline{\mu(a) L^\mu a b}) = \max \{0.4 + 0.5 - 1, 0\} = 0$, and $\overline{\mu(a)} = 0.4$. Therefore, we get $(\overline{\mu(a) L^\mu a b}) \leq \overline{\mu(a)}$. (2.19)

But, $(\overline{\mu(a) L^\mu a b^-1 a b}) = \max \{0.6 + 0.5 - 1, 0\} = 0.1$ and $\mu(a) = 0.6$.

Therefore, $(\overline{\mu(a) L^\mu a b^-1 a b}) \leq \mu(a))$. (2.20)
From (2.19) and (2.20), we have a is not external domination under the composition \mathbb{L} and $a \in \text{Ned}(\rho, \mathbb{L})$. Similarly, all the edges of Figure 2.6, we get the vertices a, b, c and d are not external domination under \mathbb{L} and $a, b, c, d \in \text{Ned}(\rho, \mathbb{L})$. But, we have $\mu(a) + \mu(b) > 1$ for all $a, b \in X$.

2.5 Internally Stable Vertex Set Int (ρ, \mathbb{L})

Definition 2.5.1. Let $G = (\mu, \rho)$ be a fuzzy graph without loops and with underlying set X where $\mu: X \to [0, 1]$, $\rho: X \times X \to [0, 1]$, vertex $a \in X$ is internally stable under the composition $\mathbb{L} \iff ((\mu(a) \mathbb{L} \rho(a, b)) \leq \overline{\mu(a)})$ and $((\mu(a) \mathbb{L} \rho^{-1}(a, b)) \leq \overline{\mu(a)})$ for some $b \in X$. We denote it by Int (ρ, \mathbb{L}).

Example 2.5.2. Let $G = (\mu, \rho)$ be a fuzzy graph where $X = \{a, b, c, d\}$, $\mu: X \to [0, 1]$, $\rho: X \times X \to [0, 1]$ with $\mu(a) = 0.7$, $\mu(b) = 0.5$, $\mu(c) = 0.6$, $\mu(d) = 0.8$, $\rho(a, b) = 0.4$, $\rho(b, c) = 0.5$, $\rho(c, d) = 0.3$, $\rho(d, a) = 0.4$, $\rho(d, b) = 0.3$ and $\rho(c, a) = 0.6$ defined as shown in the Figure 2.7.

![Figure 2.7: Int (ρ, \mathbb{L}) fuzzy graph](image-url)
The edge ab, $((\mu(a) L \rho(a, b)) = \max \{ 0.7 + 0.4 - 1, 0 \} = 0.1 \leq 0.3 = \mu(a)$
and $((\mu(a) L \rho^{-1}(a, b)) = \max \{ 0.7 + 0.4 - 1, 0 \} = 0.1 \leq 0.3 = \mu(a)$. Thus, we say that vertex a is internally stable under the composition L and $a \in \text{Int}(\rho, L)$.

The edge bc, $((\mu(b) L \rho(b, c)) = \max \{ 0.5 + 0.5 - 1, 0 \} = 0 \leq 0.5 = \mu(b)$
and $((\mu(b) L \rho^{-1}(b, c)) = \max \{ 0.5 + 0.5 - 1, 0 \} = 0 \leq 0.5 = \mu(b)$. Thus, we say that vertex b is internally stable under the composition L and $b \in \text{Int}(\rho, L)$.

The edge cd, $((\mu(c) L \rho(c, d)) = \max \{ 0.6 + 0.3 - 1, 0 \} = 0 \leq 0.4 = \mu(c)$
and $((\mu(c) L \rho^{-1}(c, d)) = \max \{ 0.6 + 0.3 - 1, 0 \} = 0 \leq 0.4 = \mu(c)$. Then, we say that vertex c is internally stable under the composition L and $c \in \text{Int}(\rho, L)$.

The edge da, $((\mu(d) L \rho(d, a)) = \max \{ 0.8 + 0.4 - 1, 0 \} = 0.2 \leq 0.2 = \mu(d)$
and $((\mu(d) L \rho^{-1}(d, a)) = \max \{ 0.8 + 0.4 - 1, 0 \} = 0.2 \leq 0.2 = \mu(d)$. Then, we say that vertex d is internally stable under the composition L and $d \in \text{Int}(\rho, L)$.

But edge ad, $((\mu(a) L \rho(a, d)) = \max \{ 0.7 + 0.4 - 1, 0 \} = 0.1 \leq 0.3 = \mu(a)$
and $((\mu(a) L \rho^{-1}(a, d)) = \max \{ 0.7 + 0.4 - 1, 0 \} = 0.1 \leq 0.3 = \mu(a)$. Then, we say that vertex a is internally stable under the composition L and $a \in \text{Int}(\rho, L)$.

The edge ca, $((\mu(c) L \rho(c, a)) = \max \{ 0.6 + 0.6 - 1, 0 \} = 0.2 \leq 0.4 = \mu(c)$
and $((\mu(c) L \rho^{-1}(c, a)) = \max \{ 0.6 + 0.6 - 1, 0 \} = 0.2 \leq 0.4 = \mu(c)$. Then, we say that vertex c is internally stable under the composition L and $c \in \text{Int}(\rho, L)$.

The edge db, $((\mu(d) L \rho(d, b)) = \max \{ 0.8 + 0.3 - 1, 0 \} = 0.1 \leq 0.2 = \mu(d)$
and $((\mu(d) L \rho^{-1}(d, b)) = \max \{ 0.8 + 0.3 - 1, 0 \} = 0.1 \leq 0.2 = \mu(d)$. Here, we say that the vertex d is internally stable under the composition L and
Similarly, from the edges ba, cb, dc, ac and bd we show that b, c, d, a and b are internally stable under the composition L and they are in $\text{Int}(\rho, L)$.

Proposition 2.5.3. Let $G = (\mu, \rho)$ be a fuzzy graph without loops and with underlying set X where $\mu : X \to [0, 1]$, $\rho : X \times X \to [0, 1]$ for all $a, b \in X$, the following are satisfied.

(i) $\text{Int}(\rho, L)$ is a L-sub weak lattice of the weak lattice $(\mu(X), \overline{L}, L)$

(ii) If $a \in \text{Int}(\rho, L)$ and $\mu(b) \leq \mu(a)$, then $b \in \text{Int}(\rho, L)$.

Proof. (i) Let $a, b \in \text{Int}(\rho, L)$.

Then, we have

$$(\mu(a) \overline{L} \rho(a, b)) \leq \overline{\mu(a)}, \quad ((\mu(b) \overline{L} \rho(a, b)) \leq \overline{\mu(b)}),$$

and

$$(\mu(a) \overline{L} \rho^{-1}(a, b)) \leq \overline{\mu(a)}), \quad ((\mu(b) \overline{L} \rho^{-1}(a, b)) \leq \overline{\mu(b)}).$$

To Prove: \((\mu(a) \overline{L} \mu(b) \overline{L} \rho(a, b)) \leq \overline{\mu(a) \overline{L} \mu(b)}\)

Now, we have

\[
(\mu(a) \overline{L} \mu(b) \overline{L} \rho(a, b)) \leq (\mu(a) \overline{L} \rho(a, b)) \overline{L} (\mu(b) \overline{L} \rho(a, b)) \\
\leq \overline{\mu(a) \overline{L} \mu(b)} \quad \text{by (2.21)} \\
\leq (\mu(a) \overline{L} \mu(b))
\]

(2.23)

Similarly, we show that \((\mu(a) \overline{L} \mu(b)) \overline{L} \rho^{-1}(a, b) \leq \overline{(\mu(a) \overline{L} \mu(b))}\) (2.24)

From (2.23) and (2.24) $\text{Int}(\rho, L)$ is sub weak lattice of $(\mu(X), \overline{L}, L)$ with respect to the operator \overline{L}.

(ii) If $a \in \text{Int}(\rho, L)$.

Then, we get $((\mu(a) \overline{L} \rho(a, b)) \leq \overline{\mu(a)})$ and $((\mu(a) \overline{L} \rho^{-1}(a, b)) \leq \overline{\mu(a)})$

Given that, $\mu(b) \leq \mu(a)$ for all $a, b \in X$
Then, \(((\mu(b) \land \rho(a, b)) \leq ((\mu(a) \land \rho(a, b)) \leq \mu(a)) \), since (ii) of proposition 2.3.3,

but, we have \((\mu(b) \land \rho(a, b)) \leq \mu(b) \) \hspace{1cm} (2.25)

Similarly, we show that \((\mu(b) \land \rho^{-1}(a, b)) \leq ((\mu(a) \land \rho^{-1}(a, b)) \leq \mu(a)) \) and

\((\mu(b) \land \rho^{-1}(a, b)) \leq \mu(b) \) \hspace{1cm} (2.26)

Hence, from (2.25), (2.26) and by the definition of \(\text{Int}(\rho, L) \), we get \(b \in \text{Int}(\rho, L) \).

Example 2.5.4. Let \(G = (\mu, \rho) \) be a fuzzy graph where \(X = \{a, b, c, d, e\}, \mu: X \rightarrow [0, 1] \)

and \(\rho: X \times X \rightarrow [0, 1] \) with \(\mu(a) = 0.7, \mu(b) = 0.4, \mu(c) = 0.6, \mu(d) = 0.9, \mu(e) = 0.8, \)

\(\rho(a, b) = 0.3, \rho(b, c) = 0.3, \rho(b, d) = 0.4, \rho(d, e) = 0.5 \) and \(\rho(c, e) = 0.5 \), defined as

shown in the Figure 2.8.

![Figure 2.8: \(\text{Int}(\rho, L) \) sub weak lattice fuzzy graph](image)

We consider the edge \(ab, ((\mu(a) \land \mu(b)) \land \rho(a, b)) = 0 \), and \((\mu(a) \land \mu(b)) = 0.9 \)

Thus, we get \((\mu(a) \land \mu(b)) \land \rho(a, b)) \leq (\mu(a) \land \mu(b)) \). Similarly, we show that

\((\mu(a) \land \mu(b)) \land \rho^{-1}(a, b)) \leq (\mu(a) \land \mu(b)) \). From the remaining edges of the graph,
we have the same result. Therefore, \(\text{Int} (\rho, \underline{L}) \) is the sub weak lattice of weak lattice \((\mu(X), \overline{L}, \underline{L})\) under \(\overline{L}\).

Remark 2.5.5. \(\text{Int} (\rho, \underline{L}) \) is not a \(L\)-sub weak lattice of the weak lattice \((\mu(X), \overline{L}, \underline{L})\) From the example 2.5.4 we consider the logical operator \(L\) and the edge \(bd\) then, we have \(((\mu(b)L\mu(d))\underline{L} \rho(b,d)) = 0.4\) but \((\mu(a)L\mu(b)) = 0\). Thus, the condition \(((\mu(b)L\mu(d))\underline{L} \rho(b,d)) \leq (\mu(a)L\mu(b))\) is not satisfied. Similarly in all the edges, we get the same result. Hence, \(\text{Int} (\rho, \underline{L}) \) is not a \(L\)-sub weak lattice of the weak lattice \((\mu(X), \overline{L}, \underline{L})\).

Example 2.5.6. Let \(G = (\mu, \rho)\) be a fuzzy graph where \(X = \{b, c, d, e\}\), \(\mu : X \rightarrow [0, 1]\), \(\rho : X \times X \rightarrow [0, 1]\) with \(\mu(b) = 0.4\), \(\mu(c) = 0.6\), \(\mu(d) = 0.8\), \(\mu(e) = 0.7\), \(\rho(b, c) = 0.3\), \(\rho(b, d) = 0.4\), \(\rho(d, e) = 0.4\) and \(\rho(c, e) = 0.5\), defined as shown in the Figure 2.9.

![Figure 2.9: \(\mu(b) \leq \mu(a)\), fuzzy graph](image)

We consider the edge \(bd\), \(\mu(b) \leq \mu(d)\) then \((\mu(b)\underline{L} \rho(b, d)) = 0\) and \(\overline{\mu(b)} = 0.6\). Next, we have \((\mu(d)\underline{L} \rho(b, d)) = 0.2\) and \(\overline{\mu(d)} = 0.2\). Therefore, we get
(μ(d) ≤ μ(b, d)) ≤ μ(d). From remaining edges of the Figure 2.9 satisfy the condition that the vertices b, c, d and e are in Int (ρ, L).

Proposition 2.5.7. Let G = (μ, ρ) be a fuzzy graph without loops and with underlying set X where μ: X → [0, 1] and ρ: X × X → [0, 1]. If μ(a) + μ(b) ≤ 1, for all a, b ∈ X. Then, a, b ∈ Int (ρ, L). Converse is not true.

Proof. If μ(a) + μ(b) ≤ 1, for all a, b ∈ X, then by the definition of Int (ρ, L), we get (μ(a) ρ(a, b)) and (μ(a) ρ−1 (a, b)) are always 0. Thus, we have the following results (i) ((μ(a) L ρ(a, b)) ≤ μ(a)) and ((μ(a) L ρ−1 (a, b)) ≤ μ(a))

(ii) ((μ(b) L ρ(a, b)) ≤ μ(b)) and ((μ(b) L ρ−1 (a, b)) ≤ μ(b)).

Hence, we get a, b ∈ Int (ρ, L). ■

Example 2.5.8. Let G = (μ, ρ) be a fuzzy graph where X = {a, b, c}, μ: X → [0, 1] and ρ: X × X → [0, 1], μ(a) = 0.6, μ(b) = 0.4, μ(c) = 0.3, ρ(a, b) = 0.3, ρ(b, c) = 0.3 and ρ(c, a) = 0.5, defined as shown in the Figure 2.10.

![Figure 2.10: μ(a) + μ(b) ≤ 1, fuzzy graph](image)

We consider the edge ab, μ(a) + μ(b) ≤ 1 then, ((μ(a) L ρ(a, b)) = 0 and μ(a) = 0.4. Therefore, ((μ(a) L ρ(a, b)) ≤ μ(a)) and ((μ(a) L ρ−1 (a, b)) ≤ μ(a)). Similarly,
we get \(((\mu(b)\overline{L}\mu(a, b)) \leq \overline{\mu(b)})\) and \(((\mu(b)\overline{L}\mu^{-1}(a, b)) \leq \overline{\mu(b)})\). Thus, the vertices \(a\) and \(b\) are internally stable under the composition \(\overline{L}\) and \(a, b \in \text{Int}(\rho, \overline{L})\).

Now we consider the edge \(bc\), \(\mu(b) + \mu(c) = 0.7 \leq 1\) then, \(((\mu(b)\overline{L}\mu(b, c)) = 0\) and \(\overline{\mu(b)} = 0.6\). Thus, \(((\mu(b)\overline{L}\mu(b, c)) \leq \overline{\mu(b)})\) and \(((\mu(b)\overline{L}\mu^{-1}(b, c)) \leq \overline{\mu(b)})\).

From vertex \(c\), we have \(((\mu(c)\overline{L}\mu(b, c)) \leq \overline{\mu(c)})\) and \(((\mu(c)\overline{L}\mu^{-1}(b, c)) \leq \overline{\mu(c)})\).

Therefore, the vertices \(b\) and \(c\) are internally stable under \(\overline{L}\) and \(b, c \in \text{Int}(\rho, \overline{L})\).

Finally, consider the edge \(ca\) , \(\mu(c) + \mu(a) = 0.9 \leq 1\) then, \(((\mu(c)\overline{L}\mu(c, a)) = 0\) and \(\overline{\mu(c)} = 0.7\). Thus, we get \(((\mu(c)\overline{L}\mu(c, a)) \leq \overline{\mu(c)})\) and \(((\mu(c)\overline{L}\mu^{-1}(c, a)) \leq \overline{\mu(c)})\).

Finally, with respect to the vertex \(a\), we get \(((\mu(a)\overline{L}\mu(a, c)) \leq \overline{\mu(c)})\) and \(((\mu(a)\overline{L}\mu^{-1}(a, c)) \leq \overline{\mu(a)})\). Therefore, the vertices \(c\) and \(a\) are internally stable under the composition \(\overline{L}\) and \(c, a \in \text{Int}(\rho, \overline{L})\). Hence, from graph for all \(a, b \in X\) if \(\mu(a) + \mu(b) \leq 1\) then, we have \(a, b \in \text{Int}(\rho, \overline{L})\).

Converse is not true

Example 2.5.9. Let \(G = (\mu, \rho)\) be a fuzzy graph where \(X = \{a, b, c, d\}\), \(\mu : X \rightarrow [0, 1]\), \(\rho : X \times X \rightarrow [0, 1]\) with \(\mu(a) = 0.7, \mu(b) = 0.5, \mu(c) = 0.6, \mu(d) = 0.8, \rho(a, b) = 0.5, \rho(b, c) = 0.5, \rho(c, d) = 0.3\), and \(\rho(d, a) = 0.4\) defined as shown in the Figure 2.11.

![Figure 2.11: \(\mu(a) + \mu(b) > 1\), fuzzy graph](image-url)
The edge ab, $((\mu(a) \overline{L} \rho(a, b)) = \max \max \{ 0.7 + 0.5 - 1, 0 \} = 0.2 \leq 0.3 = \mu(a)$ and $((\mu(a) \overline{L} \rho^{-1}(a, b)) = \max \max \{ 0.7 + 0.5 - 1, 0 \} = 0.2 \leq 0.3 = \mu(a)$. Thus, we say that, vertex a is internally stable under the composition \overline{L} and $a \in \text{Int}(\rho, \overline{L})$.

From the edge ba, $((\mu(b) \overline{L} \rho(b, a)) = \max \max \{ 0.5 + 0.5 - 1, 0 \} = 0 \leq 0.5 = \mu(b)$ and $((\mu(b) \overline{L} \rho^{-1}(b, c)) = \max \max \{ 0.5 + 0.5 - 1, 0 \} = 0 \leq 0.5 = \mu(b)$. Thus, we say that vertex b is internally stable under the composition \overline{L} and $b \in \text{Int}(\rho, \overline{L})$.

Similarly, we show that from all the edges $a, b, c, d \in \text{Int}(\rho, \overline{L})$. But, $\mu(a) + \mu(b) > 1$ for all $a, b \in X$.

Note. From the proposition 2.5.7, the set $\text{Int}(\rho, \overline{L})$ is completely determined by its maximal elements. Let us denote the set of all maximal elements by $\text{Int}_{\max}(\rho, \overline{L})$.

Then, we have the following result.

Proposition 2.5.10. Let $G = (\mu, \rho)$ be a fuzzy graph without loops and with underlying set X where $\mu : X \rightarrow [0, 1], \rho : X \times X \rightarrow [0, 1]$ and for any $a \in X$, we have $\text{Int}(\rho, \overline{L}) = \bigcup_{a \in \text{Int}_{\max}(\rho, \overline{L})} [0, \mu(a)]$, where $\text{Int}_{\max}(\rho, \overline{L})$ is the set of solutions.

Proof. Let us consider the logical operator \overline{L}, the set $\text{Int}(\rho, \overline{L})$ described as mathematical programming problem, Max{$\mu(a) = \{ \mu(x_1), \mu(x_2), \ldots, \mu(x_n) \}$ (2.27) Subject to $\begin{align*}
(\mu(x_j) \overline{L} (\rho(x_i, x_j) \overline{L} \rho(x_j, x_i))) &\leq \overline{\mu(x_j)} \quad \text{(I)} \\
(\mu(x_j) \overline{L} (\rho(x_i, x_j) \overline{L} \rho(x_j, x_i))) &\leq \overline{\mu(x_i)}, \quad \forall i, j \in \{1, 2, \ldots, n\} \quad \text{(II)}
\end{align*}$
(2.28)

From (I) of (2.28), we have $\mu(x_j) \overline{L} (\rho(x_i, x_j) \overline{L} \rho(x_j, x_i))) \leq \overline{\mu(x_j)}$.
\[\Rightarrow \max \{ \mu(x_i) + \min \{ \rho(x_i, x_j) + \rho(x_j, x_i), 1 \} - 1, 0 \} \leq \mu(x_j) \]

\[\Rightarrow \max \{ \mu(x_i) + \min \{ (\rho(x_i, x_j) + \rho(x_j, x_i), 1 \} - 1, 0 \} \leq 1 - \mu(x_j) \quad (2.29) \]

From (2.29), if \(\min \{ \rho(x_i, x_j) + \rho(x_j, x_i), 1 \} = 1 \) then we get \(\mu(x_i) + \mu(x_j) \leq 1 \)

If \(\min \{ \rho(x_i, x_j) + \rho(x_j, x_i), 1 \} = \rho(x_i, x_j) + \rho(x_j, x_i) \) then, we have

\[(2.29) \Rightarrow \max \{ \mu(x_i) + (\rho(x_i, x_j) + \rho(x_j, x_i)) - 1, 0 \} \leq 1 - \mu(x_j) \]

\[\Rightarrow \mu(x_i) + (\rho(x_i, x_j) + \rho(x_j, x_i)) - 1 \leq 1 - \mu(x_j) \quad \text{(since 0 then result is trivial)} \]

\[\Rightarrow \mu(x_i) + \mu(x_j) \leq 2 - (\rho(x_i, x_j) + \rho(x_j, x_i)) \]

\[\Rightarrow \mu(x_i) + \mu(x_j) \leq 1 \quad \text{(since 0 \leq \rho(x_i, x_j) + \rho(x_j, x_i) \leq 1)} \]

Similarly from (II) of (2.28), we have \(\mu(x_i) + \mu(x_j) \leq 1 \)

From (2.28), we have

\[(\mu(x_j) \overleftarrow{L} (\rho(x_i, x_j) \overleftarrow{L} \rho(x_j, x_i))) \leq \overline{\mu(x_j)} \]

Similarly, we show that

\[(\mu(x_j) \overleftarrow{L} (\rho(x_i, x_j) \overleftarrow{L} \rho(x_j, x_i))) \leq \overline{\mu(x_j)} \]

Hence, we have the following solution for (2.27)

\[
\begin{cases}
\mu(x_j) \leq (\rho(x_i, x_j) \overleftarrow{L} \rho(x_j, x_i)) \\
\mu(x_j) \leq (\rho(x_i, x_j) \overleftarrow{L} \rho(x_j, x_i)) \\
\mu(x_i) + \mu(x_j) \leq 1
\end{cases}
\quad \text{or}
\begin{cases}
\mu(x_j) \geq (\rho(x_i, x_j) \overleftarrow{L} \rho(x_j, x_i)) \quad \text{then} \\
\mu(x_i) \leq 1 - (\rho(x_i, x_j) \overleftarrow{L} \rho(x_j, x_i)) \\
\mu(x_j) \geq (\rho(x_i, x_j) \overleftarrow{L} \rho(x_j, x_i)) \quad \text{then} \\
\mu(x_i) \leq 1 - (\rho(x_i, x_j) \overleftarrow{L} \rho(x_j, x_i))
\end{cases}
\]

Example 2.5.11. Let \(G = (\mu, \rho) \) be a fuzzy graph where \(X = \{a, b, c, d, e\} \),

\(\mu : X \rightarrow [0, 1], \rho : X \times X \rightarrow [0, 1] \) with \(\mu(a) = 0.6, \mu(b) = 0.3, \mu(c) = 0.5, \mu(d) = 0.2, \)

\(\mu(e) = 0.9, \rho(a, b) = 0.2, \rho(b, c) = 0.3, \rho(c, d) = 0.1, \rho(d, a) = 0.2, \rho(b, d) = 0.1 \)

and \(\rho(b, e) = 0.3 \) defined as shown in the Figure 2.12.
From the Figure 2.12, we have \(\text{Max } \mu = \{ \mu(a), \mu(b), \mu(c), \mu(d), \mu(e) \} \)

\[= \text{ max } \{ 0.6, 0.3, 0.5, 0.2, 0.9 \} = 0.9 \]

Consider edge the \(ab \) using (2.28), we get \((\mu(a) \bar{L} (\rho(a, b) \underline{L} \rho(b, a))) = 0 \leq \mu(b) \)
\(\mu(a) = 0.6 \) and \((\rho(a, b) \underline{L} \rho(b, a)) = 0.4 \). Then, \(\mu(a) \geq (\rho(a, b) \underline{L} \rho(b, a)) \). Thus, we get \(\mu(a) \leq 1 - (\rho(a, b) \underline{L} \rho(b, a)) \Rightarrow 0.6 \leq 0.6 \) and \(\mu(a) + \mu(b) = 0.9 \leq 1 \). Then, \(a \in \text{Int}(\rho, [L]) \). Consider the edge \(ba \), \((\mu(b) \bar{L} (\rho(b, a) \underline{L} \rho(a, b))) = 0 \leq \mu(a), \)
\(\mu(b) = 0.3 \), and \((\rho(b, a) \underline{L} \rho(a, b)) = 0.4 \). Thus, we get \(\mu(b) \leq (\rho(b, a) \underline{L} \rho(a, b)) \) and \(\mu(a) + \mu(b) = 0.9 \leq 1 \). Hence, \(b \in \text{Int}(\rho, [L]) \). Similarly, we show that from the edges \(bc, cd, da, db \) and \(be \) we get \(a, b, c, d \in \text{Int}(\rho, [L]) \). But from the edge \(eb \), we have \((\mu(e) \bar{L} (\rho(e, b) \underline{L} \rho(b, e))) = 0.5 \leq \mu(b) = 0.7 \), \(\mu(e) \geq (\rho(e, b) \underline{L} \rho(b, e)) \).

But, \(\mu(e) \leq 1 - (\rho(e, b) \underline{L} \rho(b, e)) \Rightarrow 0.9 \leq 0.4 \) and \(\mu(b) + \mu(e) > 1 \). Thus, we have \(e \notin \text{Int}(\rho, [L]) \) and \(\text{Int}(\rho, [L]) = \bigcup_{a \in \text{Int}_{\text{max}}(\rho, [L])} [0, \mu(a)] = [0, 0.6] \).
2.6 Conclusion

In this chapter, the fuzzy extension of some known concepts of crisp graphs has been investigated. Here, we discussed the properties of logical operators \overline{L}, L. It is shown that the fuzzification of the concepts of not external domination and internally stable vertices in fuzzy graphs by using the logical operators \overline{L}, L and the composition \overline{L} which are satisfied the weak lattices and sub weak lattices conditions. We established the conditions that the vertices of fuzzy graphs are in the sets $\text{Ned} (\rho, \overline{L})$ and $\text{Int} (\rho, \overline{L})$. Finally, the set $\text{Int} (\rho, \overline{L})$ is determined by solving a mathematical programming problem with fuzzy graph.