CONTENTS

CHAPTER 1. INTRODUCTION

1.1. History of Diabetes
1.2. Definition of Diabetes
1.3. Classification
1.4. Relation among Insulin Resistance, Prediabetes and T2DM
1.5. Complications of Diabetes
1.6. Causes
1.7. Diabetes Symptoms
1.8. Diagnosis
1.9. Diabetes Prognosis
1.10. Prevalence of Diabetes
1.11. Economic burden of Diabetes in India
1.12. Morbidity and Mortality associated with Diabetes
1.13. Treatment
1.14. Diabetic Medications for Hyperglycemia
1.15. Peroxisome Proliferator Activated Receptors and T2DM
1.16. Role of PPAR Agonists in the Therapy of Type 2 Diabetes
1.17. Partial Agonism to the Rescue
1.18. Computational Methods in the Design of Multiple Receptor Activating Ligands

2. REVIEW OF LITERATURE

2.1. General

2.1.1. Diabetes: the disease
2.1.2. Types of Diabetes Mellitus
2.1.3. Insulin Dependent Diabetes Mellitus: Type1
2.1.4. Non-Insulin Dependent Diabetes Mellitus: Type2
2.1.5. Neonatal Diabetes
2.1.6. Diabetes and the Metabolic Syndrome
2.1.7. Mitochondrial Dysfunction in Type 2 Diabetes and Obesity
2.1.8. Insulin and Diabetes Mellitus
2.1.9. Insulin Receptor 93
2.1.10. Therapeutic Intervention for Hyperglycemia 102
2.1.11. Peroxisome Proliferator Activated Receptors 148
2.1.12. Functional and Structural Insight of PPARγ 155
2.1.13. Functional and Structural Insight of PPARα 159
2.1.14. Comparison of Structures of LBDs and Binding Modes among the three PPAR subtypes 161
2.1.15. Insight of Structure, Activity and Side Effects of PPAR Agonists 163
 2.1.15.1. PPARα Agonists 163
 2.1.15.2. PPARγ Agonists 167
 2.1.15.3. Dual PPAR Agonists 177
 2.1.15.3.1. PPARα/γ Agonists 178
 2.1.15.3.2. PPARγ/δ Agonists 190
 2.1.15.3.3. PPARα/δ Agonists 191
 2.1.15.4. Pan Agonists 191
 2.1.16. Partial Agonists to keep away/reduce Adverse Effects of the PPAR Dual Agonists 193

2.2. Computational 196-209
 2.2.1. Molecular Modeling Techniques 196
 2.2.1.1. Computational Methodology 198
 2.2.1.1.1. Quantum Mechanical Methods 198
 2.2.1.1.2. Quantitative Structure Activity Relationship 199
 2.2.1.1.3. Molecular Docking 202
 2.2.1.1.4. Pharmacophore Mapping 205
 2.2.1.2. Virtual Screening 208

3. EXPERIMENTAL 210-324
 3.1. Computational 210-259
 3.1.1. Dataset for Generating CoMFA Models 210
 3.1.2. Generating Molecular Structures and Alignment of the Dataset Molecules 211
 3.1.3. CoMFA 3D QSAR Modeling 211
 3.1.4. Design, Building and Activity Prediction of Novel α-Aryloxy Phenyl Propanoic Acid based Derivatives 212
 3.1.5. Design, Building and Activity Prediction of Novel Tyrosine based Derivatives 212
 3.1.6. Generation of CoMSIA Models 213
3.1.7. Design, Building and Activity Prediction of NCEs with Standard Fragment 213
3.1.8. Design, Building and Activity Prediction of NCEs as PPARα/γ Partial Agonists 215
3.1.9. Docking Studies of Designed α-Aryloxy Phenyl Propanoic Acid based New PPAR dual activators 216
3.1.10. Docking Studies of Designed Tyrosine based New PPAR dual activators 216
3.1.11. Docking Studies of Designed NCEs 217
3.1.12. Final Selection of Designed NCEs for Synthesis 218
Tables: Experimental - Computational 220
Figures: Experimental - Computational 246

3.2. Synthesis 260-324
3.2.1. Left Hand Side Moieties and Related Intermediates 261
3.2.2. Right Hand Side Moieties and Related Intermediates 267
3.2.2.1. Mono ethyl malonate 267
3.2.2.2. Acid chlorides 268
3.2.2.3. β-keto esters 269
3.2.2.4. Methoxy benzylidene β-ketoester based intermediates 271
3.2.2.5. Hydroxy benzylidene β-ketoester based intermediates 276
3.2.2.6. Methoxy benzyl β-ketoester based intermediates 281
3.2.2.7. Hydroxy benzyl β-ketoester based intermediates 286
3.2.3. The Target NCEs 291
3.2.3.1. Benzimidazolyl linked benzylidene based β-ketoesters 291
3.2.3.2. Indolyl linked benzylidene based β-ketoesters 297
3.2.3.3. Benzimidazolyl linked benzyl based β-ketoesters 304
3.2.3.4. Indolyl linked benzyl based β-ketoesters 310
Tables: Experimental - Synthesis 317

4. RESULTS AND DISCUSSION 325-638
4.1. Computational 325-507
4.1.1. Selection of Dataset 325
4.1.2. Generation of Significant CoMFA Models 325
4.1.3. Validation of the Generated Models 326
4.1.4. Contour Analysis (CoMFA) 327
4.1.5. Novel PPARα/γ Dual Activators (α-aryloxy Phenyl Propanoic Acid Derivatives) 330
4.1.6. Novel PPARα/γ Dual Activators (Tyrosine based Derivatives) 334
4.1.7. Generation of CoMSIA Models 337
4.1.8. Analysis of CoMSIA Contours 338
4.1.10. Design and Activity Prediction of NCEs with Standard Fragment 340
4.1.11. Design and Selection of β-ketoester based NCEs as Novel PPARα/γ Partial Agonists for Synthesis 347

Tables: Result and Discussion - Computational 361
Figures: Result and Discussion - Computational 409

5. SUMMARY 642-652

6. REFERENCES 653-707